Constitutively active endothelial Notch4 causes lung arteriovenous shunts in mice

Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, San Francisco, CA 94143-0507, USA.
AJP Lung Cellular and Molecular Physiology (Impact Factor: 4.08). 11/2009; 298(2):L169-77. DOI: 10.1152/ajplung.00188.2009
Source: PubMed


Lung arteriovenous (AV) shunts or malformations cause significant morbidity and mortality in several distinct clinical syndromes. For most patients with lung AV shunts, there is still no optimal treatment. The underlying molecular and cellular etiology for lung AV shunts remains elusive, and currently described animal models have insufficiently addressed this problem. Using a tetracycline-repressible system, we expressed constitutively active Notch4 (Notch4*) specifically in the endothelium of adult mice. More than 90% of mice developed lung hemorrhages and respiratory insufficiency and died by 6-7 wk after gene expression began. Vascular casting and fluorescent microsphere analysis showed evidence of lung AV shunts in affected mice. Cessation of Notch4* expression reversed these pathophysiological effects. Assessment of the vascular morphology revealed enlarged, tortuous vessels in the lungs that resembled arteriovenous malformations. By using whole lung organ culture, we demonstrated the effects of constitutively active Notch4 on the lung vasculature to be a primary lung phenomenon. Together, our results indicate the importance of Notch signaling in maintaining the lung vasculature and offer a new, reliable model with which to study the pathobiology of lung arteriovenous shunts and malformations.

18 Reads
  • Source
    • "Adult endothelial Rbpj deletion leads to enlarged, tortuous vessels in mature vascular beds associated with the gastrointestinal tract, uterus and skin. Similarly, activation of the Notch4* mutation from birth results in brain AV shunts (Murphy et al., 2008), whereas Notch4* activation post-weaning leads to AV shunts in the gastrointestinal tract, uterus, skin and lung (Carlson et al., 2005; Miniati et al., 2010) but not in the brain (Carlson et al., 2005). Our results suggest that Rbpj is required in postnatal endothelium during two distinct temporal windows, but selectively in organs such as the brain. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Arteriovenous malformations (AVMs) are tortuous vessels characterized by arteriovenous (AV) shunts, which displace capillaries and shunt blood directly from artery to vein. Notch signaling regulates embryonic AV specification by promoting arterial, as opposed to venous, endothelial cell (EC) fate. To understand the essential role of endothelial Notch signaling in postnatal AV organization, we used inducible Cre-loxP recombination to delete Rbpj, a mediator of canonical Notch signaling, from postnatal ECs in mice. Deletion of endothelial Rbpj from birth resulted in features of AVMs by P14, including abnormal AV shunting and tortuous vessels in the brain, intestine and heart. We further analyzed brain AVMs, as they pose particular health risks. Consistent with AVM pathology, we found cerebral hemorrhage, hypoxia and necrosis, and neurological deficits. AV shunts originated from capillaries (and possibly venules), with the earliest detectable morphological abnormalities in AV connections by P8. Prior to AV shunt formation, alterations in EC gene expression were detected, including decreased Efnb2 and increased Pai1, which encodes a downstream effector of TGFβ signaling. After AV shunts had formed, whole-mount immunostaining showed decreased Efnb2 and increased Ephb4 expression within AV shunts, suggesting that ECs were reprogrammed from arterial to venous identity. Deletion of Rbpj from adult ECs led to tortuosities in gastrointestinal, uterine and skin vascular beds, but had mild effects in the brain. Our results demonstrate a temporal requirement for Rbpj in postnatal ECs to maintain proper artery, capillary and vein organization and to prevent abnormal AV shunting and AVM pathogenesis.
    Development 09/2014; 141(19). DOI:10.1242/dev.108951 · 6.46 Impact Factor
  • Source
    • "Mice were anesthetized with ketamine (0.1 mg/g) and xylazine (0.01 mg/g). After we confirmed that mice were well sedated, they were given 50 µl of heparin (50 mg/ml) subcutaneously.[15] The trachea was surgically exposed and cannulated with a 20G Terumo Surflo Catheter (Terumo Corporation, Tokyo, Japan). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Liver dysfunction and cirrhosis affect vasculature in several organ systems and cause impairment of organ functions, thereby increasing morbidity and mortality. Establishment of a mouse model of hepatopulmonary syndrome (HPS) would provide greater insights into the genetic basis of the disease. Our objectives were to establish a mouse model of lung injury after common bile duct ligation (CBDL) and to investigate pulmonary pathogenesis for application in future therapeutic approaches. Eight-week-old Balb/c mice were subjected to CBDL. Immunohistochemical analyses and real-time quantitative reverse transcriptional polymerase chain reaction were performed on pulmonary tissues. The presence of HPS markers was detected by western blot and microarray analyses. We observed extensive proliferation of CD31-positive pulmonary vascular endothelial cells at 2 weeks after CBDL and identified 10 upregulated and 9 down-regulated proteins that were associated with angiogenesis. TNF-α and MMP-9 were highly expressed at 3 weeks after CBDL and were less expressed in the lungs of the control group. We constructed a mouse lung injury model by using CBDL. Contrary to our expectation, lung pathology in our mouse model exhibited differences from that of rat models, and the mechanisms responsible for these differences are unknown. This phenomenon may be explained by contrasting processes related to TNF induction of angiogenic signaling pathways in the inflammatory phase. Thus, we suggest that our mouse model can be applied to pulmonary pathological analyses in the inflammatory phase, i.e., to systemic inflammatory response syndrome, acute lung injury, and multiple organ dysfunction syndrome.
    PLoS ONE 04/2014; 9(4):e94550. DOI:10.1371/journal.pone.0094550 · 3.23 Impact Factor
  • Source
    • "The indispensable roles of Notch system have been supported by the fetal lethality of Notch signaling deficiency. For example, either knockout of Notch1, Notch1 plus Notch4, HERP1 plus HERP2, Jagged1, DLL4, presenillin-1, or constant expression of Notch4 results in embryonic death due to vascular remodeling defects [9], [10], [13], [16], [17], [20], [23]. In addition, gene mutation of Notch system has been observed in human diseases with involvement of artery, such as Algille Syndrome, which is associated with Jagged1 gene mutations and narrowing of small pulmonary arteries, as well as CADASIL Syndrome, which results from mutations of Notch3 gene and progressive degeneration of the vascular smooth muscle cells (VSMCs) [9], [10], [13], [16], [17], [20]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pulmonary hypertension (PH) is a fatal disease that lacks an effective therapy. Notch signaling pathway plays a crucial role in the angiogenesis and vascular remodeling. However, its roles in vascular remodeling in PH have not been well studied. In the current study, using hypoxia-induced PH model in rat, we examined the expression of Notch and its downstream factors. Then, we used vessel strip culture system and γ-secretase inhibitor DAPT, a Notch signaling inhibitor to determine the effect of Notch signaling in vascular remodeling and its potential therapeutic value. Our results indicated that Notch 1-4 were detected in the lung tissue with variable levels in different cell types such as smooth muscle cells and endothelial cells of pulmonary artery, bronchia, and alveoli. In addition, following the PH induction, all of Notch1, Notch3, Notch4 receptor, and downstream factor, HERP1 in pulmonary arteries, mRNA expressions were increased with a peak at 1-2 weeks. Furthermore, the vessel wall thickness from rats with hypoxia treatment increased after cultured for 8 days, which could be decreased approximately 30% by DAPT, accompanied with significant increase of expression level of apoptotic factors (caspase-3 and Bax) and transformation of vascular smooth muscle cell (VSMC) phenotype from synthetic towards contractile. In conclusion, the current study suggested Notch pathway plays an important role in pulmonary vascular remodeling in PH and targeting Notch signaling pathway could be a valuable approach to design new therapy for PH.
    PLoS ONE 12/2012; 7(12):e51514. DOI:10.1371/journal.pone.0051514 · 3.23 Impact Factor
Show more