Article

Comparative cell-mediated immunogenicity of DNA/DNA, DNA/adenovirus type 5 (Ad5), or Ad5/Ad5 HIV-1 clade B gag vaccine prime-boost regimens.

Division of Infectious Disease, Department of Internal Medicine, University of California at Davis, Sacramento, CA 95618, USA.
The Journal of Infectious Diseases (Impact Factor: 5.85). 11/2009; 201(1):132-41. DOI: 10.1086/648591
Source: PubMed

ABSTRACT We report composite results from the Merck phase I program of near-consensus clade B human immunodeficiency virus (HIV) type 1 gag vaccines.
Healthy HIV-uninfected adults were enrolled in 6 blinded placebo-controlled studies evaluating the immunogenicity of (1) a 4-dose regimen of a DNA vaccine, (2) a 3-dose priming regimen of the DNA vaccine with a booster dose of an adenovirus type 5 (Ad5)-vectored vaccine, or (3) a 3-dose regimen of the Ad5 vaccine. The DNA plasmid was provided with or without an aluminum phosphate or CRL1005 adjuvant. The primary end point was the unfractionated HIV-1 gag-specific interferon gamma enzyme-linked immunospot (ELISpot) response 4 weeks after the final dose.
Overall, 254 (83%) of 307 subjects randomized to the vaccine groups were evaluable. Adjuvants did not enhance immunogenicity of the DNA vaccine. Postboost ELISpot responder frequencies were higher for Ad5-containing regimens than for the DNA/DNA regimen (33%) but were similar for DNA/Ad5 (55%) and Ad5/Ad5 (50%). DNA/DNA elicited mainly a CD4 response, whereas Ad5/Ad5 elicited mainly a CD8 response; DNA/Ad5 generated CD4 and CD8 responses comparable to those of DNA/DNA and Ad5/Ad5, respectively.
The DNA vaccine alone or as a priming regimen for the Ad5 vaccine did not increase unfractionated ELISpot responses compared with the Ad5 vaccine alone. Qualitative T cell responses to different vaccine regimens deserve further study.

0 Bookmarks
 · 
116 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A variety of platforms are being explored for the development of vaccines for pandemic influenza. Observations that traditional inactivated subvirion vaccines and live-attenuated vaccines against H5 and some H7 influenza viruses were poorly immunogenic spurred efforts to evaluate new approaches, including whole virus vaccines, higher doses of antigen, addition of adjuvants and combinations of different vaccine modalities in heterologous prime-boost regimens to potentiate immune responses. Results from clinical trials of prime-boost regimens have been very promising. Further studies are needed to determine optimal combinations of platforms, intervals between doses of vaccines and the logistics of deployment in pre-pandemic and early pandemic settings.
    Expert Review of Vaccines 05/2014; DOI:10.1586/14760584.2014.922416 · 4.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many candidate vaccine strategies against human immunodeficiency virus (HIV) infection are under study, but their clinical development is lengthy and iterative. To accelerate HIV vaccine development optimised trial designs are needed. We propose a randomised multi-arm phase I/II design for early stage development of several vaccine strategies, aiming at rapidly discarding those that are unsafe or non-immunogenic. We explored early stage designs to evaluate both the safety and the immunogenicity of four heterologous prime-boost HIV vaccine strategies in parallel. One of the vaccines used as a prime and boost in the different strategies (vaccine 1) has yet to be tested in humans, thus requiring a phase I safety evaluation. However, its toxicity risk is considered minimal based on data from similar vaccines. We newly adapted a randomised phase II trial by integrating an early safety decision rule, emulating that of a phase I study. We evaluated the operating characteristics of the proposed design in simulation studies with either a fixed-sample frequentist or a continuous Bayesian safety decision rule and projected timelines for the trial. We propose a randomised four-arm phase I/II design with two independent binary endpoints for safety and immunogenicity. Immunogenicity evaluation at trial end is based on a single-stage Fleming design per arm, comparing the observed proportion of responders in an immunogenicity screening assay to an unacceptably low proportion, without direct comparisons between arms. Randomisation limits heterogeneity in volunteer characteristics between arms. To avoid exposure of additional participants to an unsafe vaccine during the vaccine boost phase, an early safety decision rule is imposed on the arm starting with vaccine 1 injections. In simulations of the design with either decision rule, the risks of erroneous conclusions were controlled <15%. Flexibility in trial conduct is greater with the continuous Bayesian rule. A 12-month gain in timelines is expected by this optimised design. Other existing designs such as bivariate or seamless phase I/II designs did not offer a clear-cut alternative. By combining phase I and phase II evaluations in a multi-arm trial, the proposed optimised design allows for accelerating early stage clinical development of HIV vaccine strategies.
    Trials 02/2014; 15(1):68. DOI:10.1186/1745-6215-15-68 · 2.12 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The immunogenicity results from 3 phase I trials of the Merck DNA human immunodeficiency virus (HIV) vaccine have previously been reported. Because preventive DNA vaccine strategies continue to be leveraged for diverse infections, the safety and tolerability results from these studies can inform the field moving forward, particularly regarding adverse reactions and adjuvants. No serious vaccine-related adverse events were reported during the 3-dose priming phase. Pain at the injection site was more common with adjuvanted formulations than with the phosphate-buffered saline diluent alone. Febrile reactions were usually low grade. Although the AlPO4 or CRL1005 adjuvants used in these studies did not significantly enhance the immunogenicity of the DNA vaccine, adverse events were numerically more common with adjuvanted formulations than without adjuvants.
    03/2014; 1(1):ofu016. DOI:10.1093/ofid/ofu016