Particulate matter induced enhancement of inflammatory markers in the brains of apolipoprotein E knockout mice.

Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, California 91766-1854, USA.
Journal of Nanoscience and Nanotechnology (Impact Factor: 1.34). 08/2009; 9(8):5099-104. DOI: 10.1166/jnn.2009.GR07
Source: PubMed

ABSTRACT Exposure to air particulate matter (PM) present in urban environments have been shown to induce systemic prooxidant and proinflammatory effects in apolipoprotein E knockout (ApoE-/-) mice and proinflammatory central nervous system (CNS) effects in BALB/c mice. We hypothesize that ApoE-/- mice would exhibit a greater propensity to develop PM-induced CNS effects due to their greater susceptibility to CNS inflammation. We studied the brains of ApoE-/- mice exposed in a previous study to concentrated air particles of different sizes (fine vs. ultrafine) or filtered-air to evaluate the effect of PM exposure on the development of CNS proinflammatory effects in a genetically susceptible background. This was important because, although the use of nano-sized materials opens an exciting potential for their use as diagnostic or therapeutic tools, not much is known about the possible CNS toxicity of these particles. Neuroinflammation has been shown to exacerbate progression of neurodegeneration. Since the onset and progression of idiopathic forms of neurodegenerative disorders are likely to be multifactorial and involve gene-environment interactions, we determined the possibility of particles in ambient air pollution to enhance neuroinflammation. Our results indicate that in the brain, there was significant modulation in the activation of the transcription factors NF-kappaB and AP-1 after exposure to the ultrafine fractions. Levels of two pro-inflammatory cytokines (TNF-alpha and IL-1alpha) were also increased in the brain of exposed animals and this was independent of the size fraction of PM. Since inflammatory processes have been shown to contribute to the pathology associated with neurodegenerative diseases, it will be important to further evaluate the role ambient particles may play in the potentiation of existing CNS damage and progression of neurodegenerative disorders.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Air pollution has persistently been the major cause of respiratory-related illness and death. Environmental pollutants such as diesel and petrol exhaust particles (PEPs) are the major contributors to urban air pollution. The aim of the present study was to characterize and investigate the in vitro cytotoxicity, oxidative stress, DNA damage and inflammation induced by PEPs. Cultured type II epithelium cells (human A549 lung cells) and alveolar macrophages (murine RAW 264.7 cells) were exposed to control, vehicle control and to different concentrations of PEPs for up to 24h. Each treatment was evaluated by cell viability, cytotoxicity, oxidative stress, DNA damage and inflammatory parameters. Overall in vitro studies demonstrated that both cell lines showed similar patterns in response to the above studies induced by petrol exhaust nanoparticles (PENPs). Vehicle control showed no changes compared with the control. In both cell lines, significant changes at the dose of 20 and 50μg/mL (A549 cell lines) and 10and 20μg/mL (macrophages) for PENPs were found. The reactive oxygen species production in both cell lines shot up in minutes, reached the maximum within an hour and came down after 4h. Hence, exposure to PENPs resulted in dose-dependent toxicity in cultured A549 cells and RAW 264.7 cells and was closely correlated to increased oxidative stress, DNA damage and inflammation.
    Environmental Toxicology and Pharmacology 08/2014; 38(2):518-530. DOI:10.1016/j.etap.2014.08.003 · 1.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract One of the uses of cerium oxide nanoparticles (nanoceria, CeO2) is as a diesel fuel additive to improve fuel efficiency. Gene/environment interactions are important determinants in the etiology of age-related disorders. Thus, it is possible that individuals on high-fat diet and genetic predisposition to vascular disease may be more vulnerable to the adverse health effects of particle exposure. The aim of this pilot study was to test the hypothesis that inhalation of diesel exhaust (DE) or diesel exhaust-containing cerium oxide nanoparticles (DCeE) induces stress in the brain of a susceptible animal model. Atherosclerotic prone, apolipoprotein E knockout (ApoE(-/-)) mice fed a high-fat diet, were exposed by inhalation to purified air (control), DE or DCeE. The stress-responsive transcription factor, activator protein-1 (AP-1), was significantly decreased in the cortical and subcortical fraction of the brain after DE exposure. The addition of nanoceria to the diesel fuel reversed this effect. The activation of another stress-related transcription factor (NF-κB) was not inhibited. AP-1 is composed of complexes of the Jun and/or Fos family of proteins. Exposure to DCeE caused c-Jun activation and this may be a mechanism by which addition of nanoceria to the fuel reversed the effect of DE exposure on AP-1 activation. This pilot study demonstrates that exposure to DE does impact the brain and addition of nanoceria may be protective. However, more extensive studies are necessary to determine how DE induced reduction of AP-1 activity and compensation by nanoceria impacts normal function of the brain.
    Inhalation Toxicology 08/2014; 26(10):636-641. DOI:10.3109/08958378.2014.948651 · 2.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The chronic health effects associated with sustained exposures to high concentrations of air pollutants are an important issue for millions of megacity residents and millions more living in smaller urban and rural areas. Particulate matter (PM) and ozone (O3) concentrations close or above their respective air quality standards during the last 20 years affect 24 million people living in the Mexico City Metropolitan Area (MCMA). Herein we discuss PM and O3 trends in MCMA and their possible association with the observed central nervous system (CNS) effects in clinically healthy children. We argue that prenatal and postnatal sustained exposures to a natural environmental exposure chamber contribute to detrimental neural responses. The emerging picture for MCMA children shows systemic inflammation, immunodysregulation at both systemic and brain levels, oxidative stress, neuroinflammation, small blood vessel pathology, and an intrathecal inflammatory process, along with the early neuropathological hallmarks for Alzheimer and Parkinson's diseases. Exposed brains are briskly responding to their harmful environment and setting the bases for structural and volumetric changes, cognitive, olfactory, auditory and vestibular deficits and long term neurodegenerative consequences. We need to improve our understanding of the PM pediatric short and long term CNS impact through multidisciplinary research. Public health benefit can be achieved by integrating interventions that reduce fine PM levels and pediatric exposures and establishing preventative screening programs targeting pediatric populations that are most at risk. We fully expect that the health of 24 million residents is important and blocking pediatric air pollution research and hiding critical information that ought to be available to our population, health, education and social workers is not in the best interest of our children.
    Environmental Research 02/2015; 137. DOI:10.1016/j.envres.2014.12.012 · 3.95 Impact Factor