Article

Optimización de la solución numérica por elementos finitos de sondeos geoeléctricos

Source: OAI

ABSTRACT En el artículo se presenta una nueva metodología de solución para resolver problemas de flujo y potencial modelados con elementos finitos. El sistema de ecuaciones resultantes de dicha solución conocido como CGEIS (Gradientes Conjugados con Precondicionamiento y Escalonamiento, utilizando la Descomposición Incompleta de Cholesky). Este método puede ser utilizado sólo para el caso de matrices simétricas y positivamente definidas, las cuales son encontradas en problemas de potencial tales como sondeos geoeléctricos, flujo de aguas subterráneas, hidraúlica, contaminación, petróleos, etc.. El método fue implementado con el fin de simular sondeos geoeléctricos y flujo de aguas subterráneas. Su montaje se realizó en un computador VAX-2, y se utilizó el FORTRAN 77, como lenguaje de programación. Adicionalmente el método optimiza los recursos computacionales tales como tiempo de ejecución y memoria principal. A new solution method is presented to solve potencial and flow problems, when a finite element representation is used. The resulting equations can be arranged in a matrix form and apply a new solution method called CGEIS (Conjugated Gradients Escaled and Preconditioned, using the Incomplet Cholesky Descomposition). This method can be used for symetric and positively defined matrices, which are found in many potentials problems such as in reservoir engineering, geoelectrics, hidraulics, oil, etc.. The method was implemented to solve complex matrices obtained in standar and continuous geolectrics soundings, and in groundwater flow. A FORTRAN 77 code was developed in a VAX-2 computer. Also, the method optimizes the computer resources (Time and memory). Peer Reviewed

0 Bookmarks
 · 
44 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AbstractA numerical technique is developed to solve the three-dimensional potential distribution about a point source of current located in or on the surface of a half-space containing arbitrary two-dimensional conductivity distribution. Finite difference equations are obtained for Poisson's equations by using point- as well as area-discretization of the subsurface. Potential distributions at all points in the set defining the half-space are simultaneously obtained for multiple point sources of current injection. The solution is obtained with direct explicit matrix inversion techniques. An empirical mixed boundary condition is used at the “infinitely distant” edges of the lower half-space. Accurate solutions using area-discretization method are obtained with significantly less attendant computational costs than with the relaxation, finite-element, or network solution techniques for models of comparable dimensions.
    Geophysical Prospecting 02/1979; 27(1):106 - 136. · 1.36 Impact Factor
  • Simple Data Procesing Of Tripotencial Apparent Resistivity Measurements as an Aid To The Interpretation, Of Subsurface Structure. R F Acworth, Griffiths . 861-887.

Full-text (2 Sources)

View
1 Download
Available from
Sep 16, 2014