Eliminación biológica de nutrientes (nitrógeno y fósforo) mediante un proceso discontinuo de fangos activados

Source: OAI

ABSTRACT Los Reactores Biológicos Secuenciales son una alternativa a los sistemas de tratamiento de fangos activados convencionales. Su funcionamiento discontinuo, basado en ciclos que se repiten a lo largo del tiempo, les proporciona una gran flexibilidad para adaptarse a diferentes modalidades de tratamiento y, en concreto, para la eliminación de nutrientes. El estudio realizado con un prototipo de reactor biológico secuencial ha permitido evaluar los procesos de eliminación de materia orgánica y nutrientes (nitrógeno y fósforo) de un agua residual urbana. Las concentraciones medias de materia orgánica, medida como DQO, y de materia en suspensión en el efluente han sido de 40 mg O2/L y 8 mg/L, con unos rendimientos de eliminación del 83 y 88%, respectivamente. Los rendimientos de eliminación de nitrógeno han sido del 53%, con una concentración media en el efluente de 14 mg N/L. Por otra parte, la presencia de nitratos en el líquido de mezcla ha inhibido el proceso de asimilación biológica de fósforo en la mayor parte de los ciclos estudiados. En las ocasiones en que no ha sido así, se han alcanzado rendimientos de eliminación de fósforo del 67%, con concentraciones en el efluente próximas a 2 mg P/L.

Download full-text


Available from: Rafael Mujeriego, Aug 29, 2014
  • Journal - Water Pollution Control Federation 06/1976; 48(5):835-52.
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a biochemical reduction of oxidized-nitrogen species, the denitrification reaction requires the availability of an electron-donor substrate. This requirement is typically satisfied by the provision of an organic carbon supplement or, possibly, a reactor design which utilizes raw-waste organic carbon components. Bacterial storage can also provide the necessary electron source. However, in the instance of conventional wastewater treatment facilities, the limited availability of such cellular reserve material results in a markedly reduced denitrification capacity. Bench-scale studies of storage induced denitrification were conducted using a sequencing batch reactor. By operating the reactor in a mode conducive to the development of cellular storage, the system maintained a consistent 92+% reduction in total nitrogen without a carbon supplement. Depletion of the cellular glycogen reserve was observed during the denitrification reaction.
    Water Research 01/1980; 14(10-14):1483-1488. DOI:10.1016/0043-1354(80)90014-7 · 5.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The completely mixed alternating aerobic-anoxic (AAA) activated sludge process for nitrogen removal was investigated to observe it under normal operating conditions, evaluate its dynamic responses, and investigate the feasibility of real-time sensors (dissolved oxygen [DO], pH, and oxidation-reduction potential [ORP]) as process control parameters. Total nitrogen reduction of 72% to 83% could be achieved in the AAA process with an aerobic fraction of 50% and mean cell residence time between 7 and 20 days. The steady-state process evaluation suggested energy savings from lesser aeration time and enhancement in oxygen transfer efficiency. As compared with the sludge from the control aerobic reactor, a slight deterioration in sludge settleability in terms of zone settling velocity was noticed. Feasibility study on the use of pH or ORP as a real-time process control parameter for the AAA process indicates that either parameter may be used. Several control points on the pH profile were identified and defined. Particularly significant are the points that define the end of nitrification in the aerobic cycle and the end of anoxic respiration in the anoxic cycle. Application of these points to control the duration of aerobic and anoxic cycles is discussed.
    Water Environment Research 12/1995; 68(1):83-93. DOI:10.2175/106143096X127244 · 1.00 Impact Factor