Conference Paper

Chasing an Elusive Target With a Mobile Robot

INRIA, Montbonnot
DOI: 10.1109/IROS.2001.977172 Conference: Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference on, Volume: 3
Source: IEEE Xplore

ABSTRACT This paper describes how a mobile robot (a six-wheeled Koala
equipped with a PAL pan-tilt camera) can chase an elusive target (a
remote controlled toy car) in a unknown and unconstrained environment.
First, the paper demonstrates the efficiency, simplicity, and adequacy
of Bayesian robot programming to quickly develop such applications.
Next, it illustrates that a high information compression ratio may be
obtained by some pertinent sensory-motor decoupling

Download full-text

Full-text

Available from: Pierre Bessiere, Jun 28, 2015
0 Followers
 · 
70 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel vision-based scheme is presented for driving a nonholonomic mobile robot to intercept a moving target. The proposed method has a two-level structure. On the lower level, the pan–tilt platform carrying the on-board camera is controlled so as to keep the target as close as possible to the center of the image plane. On the higher level, the relative position of the target is retrieved from its image coordinates and the camera pan–tilt angles through simple geometry, and used to compute a control law which drives the robot to the target. Various possible choices are discussed for the high-level robot controller, and the associated stability properties are rigorously analysed. The proposed visual interception method is validated through simulations as well as experiments on the mobile robot MagellanPro.
    Robotics and Autonomous Systems 06/2007; DOI:10.1016/j.robot.2007.02.001 · 1.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a vision-based scheme for driving a nonholonomic mobile robot to intercept a moving target. Our method relies on a two-level approach. On the lower level, the pan-tilt platform which carries the on-board camera is controlled so as to keep the target at the center of the image plane. On the higher level, the robot operates under the assumption that the camera system achieves perfect tracking. In particular, the relative position of the ball is retrieved from the pan/tilt angles through simple geometry, and used to compute a control law driving the robot to the target. Various possible choices are discussed for the high-level robot controller. The proposed visual interception method is validated through simulations as well as experiments on the mobile robot MagellanPro.
    Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on; 09/2005
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autonomous navigation in open and dynamic environments is an important challenge, requiring to solve several difficult research problems located on the cutting edge of the state of the art. Bassically, these problems can be classified into three main categories: SLAM in dynamic environments; Detection, characterization, and behavior prediction of the potential moving obstacles; On-line motion planning and safe navigation decision based on world state predictions. This paper addresses some aspects of these problems and presents our latest approaches and results. The solutions we have implemented are mainly based on the followings paradigms: Characterization and motion prediction of the observed moving entities using bayesian programming; Online goal-oriented navigation decisions using the Partial Motion Planning (PMP) paradigm.