Article

# Multivariate Chebyshev Inequalities

The Annals of Mathematical Statistics 01/1960; DOI: 10.1214/aoms/1177705673

Source: OAI

- Citations (0)
- Cited In (52)

- [Show abstract] [Hide abstract]

**ABSTRACT:**We show how to compute lower bounds for the supremum Bayes error if the class-conditional distributions must satisfy moment constraints, where the supremum is with respect to the unknown class-conditional distributions. Our approach makes use of Curto and Fialkow's solutions for the truncated moment problem. The lower bound shows that the popular Gaussian assumption is not robust in this regard. We also construct an upper bound for the supremum Bayes error by constraining the decision boundary to be linear.IEEE Transactions on Information Theory 01/2012; 58(6):3606-3612. · 2.62 Impact Factor - 01/2008;
- [Show abstract] [Hide abstract]

**ABSTRACT:**Chebyshev-inequality-based convex relaxations of Chance-Constrained Programs (CCPs) are shown to be useful for learning classifiers on massive datasets. In particular, an algorithm that integrates efficient clustering procedures and CCP approaches for computing classifiers on large datasets is proposed. The key idea is to identify high density regions or clusters from individual class conditional densities and then use a CCP formulation to learn a classifier on the clusters. The CCP formulation ensures that most of the data points in a cluster are correctly classified by employing a Chebyshev-inequality-based convex relaxation. This relaxation is heavily dependent on the second-order statistics. However, this formulation and in general such relaxations that depend on the second-order moments are susceptible to moment estimation errors. One of the contributions of the paper is to propose several formulations that are robust to such errors. In particular a generic way of making such formulations robust to moment estimation errors is illustrated using two novel confidence sets. An important contribution is to show that when either of the confidence sets is employed, for the special case of a spherical normal distribution of clusters, the robust variant of the formulation can be posed as a second-order cone program. Empirical results show that the robust formulations achieve accuracies comparable to that with true moments, even when moment estimates are erroneous. Results also illustrate the benefits of employing the proposed methodology for robust classification of large-scale datasets.Optimization and Engineering 01/2013; 14(2). · 0.83 Impact Factor

Data provided are for informational purposes only. Although carefully collected, accuracy cannot be guaranteed. The impact factor represents a rough estimation of the journal's impact factor and does not reflect the actual current impact factor. Publisher conditions are provided by RoMEO. Differing provisions from the publisher's actual policy or licence agreement may be applicable.