The effect of calcium on the conformation of cobalamin transporter BtuB

Department of Physics, University of Illinois, Urbana, Illinois 61801, USA.
Proteins Structure Function and Bioinformatics (Impact Factor: 2.63). 04/2010; 78(5):1153-62. DOI: 10.1002/prot.22635
Source: PubMed


BtuB is a beta-barrel membrane protein that facilitates transport of cobalamin (vitamin B12) from the extracellular medium across the outer membrane of Escherichia coli. It is thought that binding of B12 to BtuB alters the conformation of its periplasm-exposed N-terminal residues (the TonB box), which enables subsequent binding of a TonB protein and leads to eventual uptake of B12 into the cytoplasm. Structural studies determined the location of the B12 binding site at the top of the BtuB's beta-barrel, surrounded by extracellular loops. However, the structure of the loops was found to depend on the method used to obtain the protein crystals, which-among other factors-differed in calcium concentration. Experimentally, calcium concentration was found to modulate the binding of the B12 substrate to BtuB. In this study, we investigate the effect of calcium ions on the conformation of the extracellular loops of BtuB and their possible role in B12 binding. Using all-atom molecular dynamics, we simulate conformational fluctuations of several X-ray structures of BtuB in the presence and absence of calcium ions. These simulations demonstrate that calcium ions can stabilize the conformation of loops 3-4, 5-6, and 15-16, and thereby prevent occlusion of the binding site. Furthermore, binding of calcium ions to extracellular loops of BtuB was found to enhance correlated motions in the BtuB structure, which is expected to promote signal transduction. Finally, we characterize conformation dynamics of the TonB box in different X-ray structures and find an interesting correlation between the stability of the TonB box structure and calcium binding.

Download full-text


Available from: Binquan Luan, Feb 03, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The light absorption in light-harvesting complexes is performed by molecules such as chlorophyll, carotenoid, or bilin. Recent experimental findings in some of these complexes suggest the existence of long-lived coherences between the individual pigments at low temperatures. In this context, the question arises if the bath-induced fluctuations at different chromophores are spatially correlated or not. Here we investigate this question for the Fenna-Matthews-Olson (FMO) complex of Chlorobaculum tepidum by a combination of atomistic theories, i.e., classical molecular dynamics simulations and semiempirical quantum chemistry calculations. In these investigations at ambient temperatures, only weak correlations between the movements of the chromophores can be detected at the atomic level and none at the more coarse-grained level of site energies. The often-employed uncorrelated bath approximations indeed seem to be valid. Nevertheless, correlations between fluctuations in the electronic couplings between the pigments can be found. Depending on the level of theory employed, also correlations between the fluctuations of site energies and the fluctuations in electronic couplings are discernible.
    The Journal of Physical Chemistry B 02/2011; 115(4):758-64. DOI:10.1021/jp1099514 · 3.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OpdK is an outer membrane protein of the pathogenic bacterium Pseudomonas aeruginosa. The recent crystal structure of this protein revealed a monomeric, 18-stranded β-barrel with a kidney-shaped pore, whose constriction features a diameter of 8 Å. Using systematic single-channel electrical recordings of this protein pore reconstituted into planar lipid bilayers under a broad range of ion concentrations, we were able to probe its discrete gating kinetics involving three major and functionally distinct conformations, in which a dominant open substate O(2) is accompanied by less thermodynamically stable substates O(1) and O(3). Single-channel electrical data enabled us to determine the alterations in the energetics and kinetics of the OpdK protein when experimental conditions were changed. In the future, such a semiquantitative analysis might provide a better understanding on the dynamics of current fluctuations of other β-barrel membrane protein channels.
    Biochemistry 06/2011; 50(22):4987-97. DOI:10.1021/bi200454j · 3.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pseudomonas aeruginosa is a Gram-negative bacterium that utilizes substrate-specific outer membrane (OM) proteins for the uptake of small, water-soluble nutrients employed in the growth and function of the cell. In this paper, we present for the first time a comprehensive single-channel examination of seven members of the OM carboxylate channel K (OccK) subfamily. Recent biochemical, functional, and structural characterization of the OccK proteins revealed their common features, such as a closely related, monomeric, 18-stranded β-barrel conformation with a kidney-shaped transmembrane pore and the presence of a basic ladder within the channel lumen. Here, we report that the OccK proteins exhibited fairly distinct unitary conductance values, in a much broader range than previously expected, which includes low (~40-100 pS) and medium (~100-380 pS) conductance. These proteins showed diverse single-channel dynamics of current gating transitions, revealing one-open substate (OccK3), two-open substate (OccK4-OccK6), and three-open substate (OccK1, OccK2, and OccK7) kinetics with functionally distinct conformations. Interestingly, we discovered that anion selectivity is a conserved trait among the members of the OccK subfamily, confirming the presence of a net pool of positively charged residues within their central constriction. Moreover, these results are in accord with an increased specificity and selectivity of these protein channels for negatively charged, carboxylate-containing substrates. Our findings might ignite future functional examinations and full atomistic computational studies for unraveling a mechanistic understanding of the passage of small molecules across the lumen of substrate-specific, β-barrel OM proteins.
    Biochemistry 03/2012; 51(11):2319-30. DOI:10.1021/bi300066w · 3.02 Impact Factor
Show more