Article

Deletion of nuclear factor-E2-related factor-2 leads to rapid onset and progression of nutritional steatohepatitis in mice.

Department of Gastroenterology,Graduate School of Comprehensive Human Sciences, The University of Tsukuba, Tsukuba-shi, Ibaraki, Japan.
AJP Gastrointestinal and Liver Physiology (Impact Factor: 3.65). 11/2009; 298(2):G283-94. DOI: 10.1152/ajpgi.00296.2009
Source: PubMed

ABSTRACT Oxidative stress is a critical mediator in liver injury of steatohepatitis. The transcription factor Nrf2 serves as a cellular stress sensor and is a key regulator for induction of hepatic detoxification and antioxidative stress systems. The involvement of Nrf2 in defense against the development of steatohepatitis remains unknown. We aimed to investigate the protective roles of Nrf2 in nutritional steatohepatitis using wild-type (WT) and Nrf2 gene-null (Nrf2-null) mice. WT and Nrf2-null mice were fed a methionine- and choline-deficient (MCD) diet for 3 and 6 wk, and the liver tissues were analyzed for pathology and for expression levels of detoxifying enzymes and antioxidative stress genes via the Nrf2 transcriptional pathway. In WT mice fed an MCD diet, Nrf2 was potently activated in the livers, and steatohepatitis did not develop over the observation periods. However, in Nrf2-null mice fed an MCD diet, the pathological state of the steatohepatitis was aggravated in terms of fatty changes, inflammation, fibrosis, and iron accumulation. In the livers of the Nrf2-null mice, oxidative stress was significantly increased compared with that of WT mice based on the increased levels of 4-hydroxy-2-nonenal and malondialdehyde. This change was associated with the decreased levels of glutathione, detoxifying enzymes, catalase, and superoxide dismutase activity. Correlating well with the liver pathology, the mRNA levels of factors involved in fatty acid metabolism, inflammatory cytokines, and fibrogenesis-related genes were significantly increased in the livers of the Nrf2-null mice. These findings demonstrate that Nrf2 deletion in mice leads to rapid onset and progression of nutritional steatohepatitis induced by an MCD diet. Activation of Nrf2 could be a promising target toward developing new options for prevention and treatment of steatohepatitis.

0 Bookmarks
 · 
120 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear erythroid 2-related factor 2 (Nrf2) is a central regulator of antioxidative response elements-mediated gene expression. It has a significant role in adaptive responses to oxidative stress by interacting with the antioxidant response element, which induces the expression of a variety of downstream targets aimed at cytoprotection. Previous studies suggested oxidative stress and associated damage could represent a common link between different forms of diseases. Oxidative stress has been implicated in various liver diseases, including viral hepatitis, nonalcoholic fatty liver disease/steatohepatitis, alcoholic liver disease and drug-induced liver injury. Nrf2 activation is initiated by oxidative or electrophilic stress, and aids in the detoxification and elimination of potentially harmful exogenous chemicals and their metabolites. The expression of Nrf2 has been observed throughout human tissue, with high expression in detoxification organs, especially the liver. Thus, Nrf2 may serve as a major regulator of several cellular defense associated pathways by which hepatic cells combat oxidative stress. We review the relevant literature concerning the crucial role of Nrf2 and its signaling pathways against oxidative stress to protect hepatic cell from oxidative damage during development of common chronic liver diseases. We also review the use of Nrf2 as a therapeutic target to prevent and treat liver diseases.
    World journal of gastroenterology : WJG. 09/2014; 20(36):13079-13087.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mice lacking transcription factor NF-E2 p45-related factor 2 (Nrf2) develop more severe non-alcoholic steatohepatitis (NASH), with cirrhosis, than wild-type (Nrf2(+/+)) mice when fed a high-fat (HF) diet for 24 weeks. Although NASH is usually associated with insulin resistance, HF-fed Nrf2(-/-) mice exhibited better insulin sensitivity than HF-fed Nrf2(+/+) mice. In livers of HF-fed mice, loss of Nrf2 resulted in greater induction of lipogenic genes, lower expression of β-oxidation genes, greater reduction in AMP-activated protein kinase (AMPK) levels, and diminished acetyl-CoA carboxylase phosphorylation than in the wild-type, which is consistent with greater fatty acid (FA) synthesis in Nrf2(-/-) livers. Moreover, primary Nrf2(-/-) hepatocytes displayed lower glucose and FA oxidation than Nrf2(+/+) hepatocytes, with FA oxidation partially rescued by treatment with AMPK activators. The unfolded protein response (UPR) was perturbed in control RC-fed Nrf2(-/-) livers, and this was associated with constitutive activation of NF-κB and JNK, along with up-regulation of inflammatory genes. The HF-diet elicited an antioxidant response in Nrf2(+/+) livers, and as this was compromised in Nrf2(-/-) livers they suffered oxidative stress. Therefore Nrf2 protects against NASH by suppressing lipogenesis, supporting mitochondrial function, increasing the threshold for the UPR and inflammation, and enabling adaptation to HF diet-induced oxidative stress.
    Molecular and cellular biology. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear factor-E2-related factor 2 (Nrf2) is a regulator of lipid metabolism as well as various cytoprotective enzymes and may be involved in the pathogenesis of non-alcoholic fatty liver disease. Although, bile acids affect lipid metabolism, the role of Nrf2 in bile acid metabolism remains unclear. In this study, it was tested how Nrf2 modulates lipid and bile acid homeostasis in liver in response to changes of cholesterol absorption under high-fat diet using Nrf2-null mice. Eight-week-old male wild-type and Nrf2-null mice (n = 6/group) were divided into three groups fed the following diets: 1) control diet containing 4% soybean oil and 16% lard, 2) control diet plus ezetimibe, 3) control diet plus cholesterol. Blood and livers were removed after 4 weeks feeding. High cholesterol diet increased hepatic expression of liver X receptor α target genes related to fatty acid metabolism (FAS, ACC1, SREBP-1c, SCD-1c and CD36), cholesterol transport (Abcg5/abcg8) and bile acid synthesis (Cyp7a1) in wild type mice. However, these genes were not induced in Nrf2-null mice. These findings suggest that Nrf2 has a relation to liver X receptor α and controls the regulation of gene expressions related to lipid and bile acid metabolism.
    Journal of Clinical Biochemistry and Nutrition 03/2014; 54(2):90-4. · 2.25 Impact Factor

Similar Publications