Article

Abnormalities in brain structure and behavior in GSK-3alpha mutant mice

Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada.
Molecular Brain (Impact Factor: 4.35). 11/2009; 2:35. DOI: 10.1186/1756-6606-2-35
Source: PubMed

ABSTRACT Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded by two genes that generate two related proteins: GSK-3alpha and GSK-3beta. Mice lacking a functional GSK-3alpha gene were engineered in our laboratory; they are viable and display insulin sensitivity. In this study, we have characterized brain functions of GSK-3alpha KO mice by using a well-established battery of behavioral tests together with neurochemical and neuroanatomical analysis.
Similar to the previously described behaviours of GSK-3beta(+/-) mice, GSK-3alpha mutants display decreased exploratory activity, decreased immobility time and reduced aggressive behavior. However, genetic inactivation of the GSK-3alpha gene was associated with: decreased locomotion and impaired motor coordination, increased grooming activity, loss of social motivation and novelty; enhanced sensorimotor gating and impaired associated memory and coordination. GSK-3alpha KO mice exhibited a deficit in fear conditioning, however memory formation as assessed by a passive avoidance test was normal, suggesting that the animals are sensitized for active avoidance of a highly aversive stimulus in the fear-conditioning paradigm. Changes in cerebellar structure and function were observed in mutant mice along with a significant decrease of the number and size of Purkinje cells.
Taken together, these data support a role for the GSK-3alpha gene in CNS functioning and possible involvement in the development of psychiatric disorders.

Full-text

Available from: James R Woodgett, Apr 17, 2015
0 Followers
 · 
295 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with schizophrenia are at an increased risk for the development of depression. Overlap in the symptoms and genetic risk factors between the two disorders suggests a common etiological mechanism may underlie the presentation of comorbid depression in schizophrenia. Understanding these shared mechanisms will be important in informing the development of new treatments. Rodent models are powerful tools for understanding gene function as it relates to behavior. Examining rodent models relevant to both schizophrenia and depression reveals a number of common mechanisms. Current models which demonstrate endophenotypes of both schizophrenia and depression are reviewed here, including models of CUB and SUSHI multiple domains 1, PDZ and LIM domain 5, glutamate Delta 1 receptor, diabetic db/db mice, neuropeptide Y, disrupted in schizophrenia 1, and its interacting partners, reelin, maternal immune activation, and social isolation. Neurotransmission, brain connectivity, the immune system, the environment, and metabolism emerge as potential common mechanisms linking these models and potentially explaining comorbid depression in schizophrenia.
    Frontiers in Psychiatry 02/2015; 6:13. DOI:10.3389/fpsyt.2015.00013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glycogen synthase kinase-3 (GSK-3), a member of the serine/threonine kinase family was first identified as an inhibitor of the metabolic enzyme glycogen synthase and is now accepted as a widely influential enzyme responsible for many intracellular regulatory mechanisms with over 50 known substrates characterized. There are two mammalian GSK-3 isoforms encoded by separate genes: GSK-3 alpha and GSK-3 beta with high structural homology. Both GSK-3 alpha and GSK-3 beta are widely expressed in many tissues with the highest levels in the brain and their functions are generally considered to be indistinguishable. Unlike many other protein kinases, GSK-3 is constitutively dephosphorylated and active in resting cells. Phosphorylation of GSK-3 by other protein kinases such as PKA (Protein kinase A), AKT (Protein kinase B) and PKC (Protein kinase C) inhibits its activity. Today a growing body of evidence strongly suggests that increased GSK-3 activity is involved in the development of schizophrenia and mood disorders such as bipolar disorder, major depression and hyperactivity associated disorders. Thus, inhibition of overactive GSK-3 has become a promising target in the treatment of these psychiatric disorders. Herein we will briefly discuss the underlying mechanisms related to how GSK-3 is thought to participate in such diseases and will give examples of clinically important treatments that have a role in GSK-3 regulation.
    Bulletin of Clinical Psychopharmacology 03/2014; 24(1):1. DOI:10.5455/bcp.20140317063255 · 0.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Suicide is one of the leading causes of death in the United States, yet it remains difficult to understand the mechanistic provocations and to intervene therapeutically. Stress is recognized as a frequent precursor to suicide. Psychological stress is well established to cause activation of the inflammatory response, including causing neuroinflammation, an increase of inflammatory molecules in the central nervous system (CNS). Neuroinflammation is increasingly recognized as affecting many aspects of CNS functions and behaviors. In particular, much evidence demonstrates that inflammatory markers are elevated in traits that have been linked to suicidal behavior, including aggression, impulsivity and depression. Lithium is recognized as significantly reducing suicidal behavior, is anti-inflammatory and diminishes aggression, impulsivity and depression traits, each of which is associated with elevated inflammation. The anti-inflammatory effects of lithium result from its inhibition of glycogen synthase kinase-3 (GSK3). GSK3 has been demonstrated to strongly promote inflammation, aggressive behavior in rodents and depression-like behaviors in rodents, whereas regulation of impulsivity by GSK3 has not yet been investigated. Altogether, evidence is building supporting the hypothesis that stress activates GSK3, which in turn promotes inflammation, and that inflammation is linked to behaviors associated with suicide, including particularly aggression, impulsivity and depression. Further investigation of these links may provide a clearer understanding of the causes of suicidal behavior and provide leads for the development of effective preventative interventions, which may include inhibitors of GSK3.
    Translational Psychiatry 12/2014; 4:e488. DOI:10.1038/tp.2014.129 · 4.36 Impact Factor