Article

Generation and Initial Characterization of FDD Knock In Mice

Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.
PLoS ONE (Impact Factor: 3.53). 11/2009; 4(11):e7900. DOI: 10.1371/journal.pone.0007900
Source: PubMed

ABSTRACT Mutations in the integral membrane protein 2B, also known as BRI(2), a type II trans-membrane domain protein cause two autosomal dominant neurodegenerative diseases, Familial British and Danish Dementia. In these conditions, accumulation of a C-terminal peptide (ABri and ADan) cleaved off from the mutated precursor protein by the pro-protein convertase furin, leads to amyloid deposition in the walls of blood vessels and parenchyma of the brain. Recent advances in the understanding of the generation of amyloid in Alzheimer's disease has lead to the finding that BRI(2) interacts with the Amyloid Precursor Protein (APP), decreasing the efficiency of APP processing to generate Abeta. The interaction between the two precursors, APP and BRI(2), and possibly between Abeta and ABri or ADan, could be important in influencing the rate of amyloid production or the tendency of these peptides to aggregate.
We have generated the first BRI(2) Danish Knock-In (FDD(KI)) murine model of FDD, expressing the pathogenic decamer duplication in exon 6 of the BRI(2) gene. FDD(KI) mice do not show any evident abnormal phenotype, with normal brain histology and no detectable amyloid deposition in blood vessel walls or parenchyma.
This new murine mouse model will be important to further understand the interaction between APP and BRI(2), and to provide insights into the molecular basis of FDD.

Download full-text

Full-text

Available from: Luciano D'adamio, Jun 30, 2015
0 Followers
 · 
156 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Familial British Dementia (FBD) is caused by an autosomal dominant mutation in the BRI2/ITM2B gene (Vidal et al., 1999). FBD(KI) mice are a model of FBD that is genetically congruous to the human disease, because they carry one mutant and one wild-type Bri2/Itm2b allele. Analysis of these mice has shown that the British mutation causes memory impairments due to loss of Bri2 function (Tamayev et al., 2010b). BRI2 is a physiologic inhibitor of processing of the Aβ-precursor protein (APP; Matsuda et al., 2008), a gene associated with Alzheimer's disease (Bertram et al., 2010). Here we show that APP haploinsufficiency prevents memory dysfunctions seen in FBD(KI) mice. This genetic suppression is consistent with a role for APP in the pathogenesis of memory deficits. Moreover, it provides compelling evidence that the memory dysfunctions caused by the British BRI2 mutant are dependent on endogenous APP and that BRI2 and APP functionally interact. This evidence establishes a mechanistic connection between Familial British and Alzheimer's dementias.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 04/2012; 32(16):5481-5. DOI:10.1523/JNEUROSCI.5193-11.2012 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Familial dementias, which include Alzheimer disease (AD), familial British dementia (FBD), and familial Danish dementia (FDD), are caused by dominantly inherited autosomal mutations and are characterized by the production of amyloidogenic peptides, neurofibrillary tangles (NFTs) and neurodegeneration (St George-Hyslop and Petit, 2005; Garringer et al., 2009). The prevailing pathogenic theory, the "amyloid cascade hypothesis" (Hardy and Selkoe, 2002), posits that the accumulation of amyloidogenic peptides triggers tauopathy, neurodegeneration, and cognitive and behavioral changes. However, this hypothesis is yet to be validated, and causes of dementia may be multifaceted and involve other mechanisms, such as loss of function due to pathogenic mutations. Mouse models of human dementia invariably use transgenic expression systems (LaFerla and Oddo, 2005; McGowan et al., 2006; Vidal et al., 2009; Coomaraswamy et al., 2010) that do not reflect the genotypes of human disease and cannot replicate loss of function. Therefore, we generated a knock-in (KI) mouse model of FBD (FBD(KI)) genetically congruous with the human disease. FBD is caused by a missense mutation at the stop codon of the BRI2 gene (Vidal et al., 1999) and, like FBD patients, FBD(KI) mice carry this mutation in one of the two murine Bri2 alleles. We report that the British mutation drastically reduces expression of mature BRI2 in both KI mice and human FBD brains. This deficit is associated with severe hippocampal memory deficits in FBD(KI) mice. Remarkably, these animals showed no cerebral amyloidosis and tauopathy. Bri2(+/-) mice present memory deficits similar to those in FBD(KI) animals. Collectively, these results indicate that the British BRI2 mutation underlies abnormal memory due to loss of BRI2 function and independently of histopathological alterations typically evident in advanced neurodegenerative disease.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 11/2010; 30(44):14915-24. DOI:10.1523/JNEUROSCI.3917-10.2010 · 6.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Familial British dementia (FBD) and familial Danish dementia (FDD) are two autosomal dominant neurodegenerative diseases caused by mutations in the BRI ( 2 ) gene. FBD and FDD are characterized by widespread cerebral amyloid angiopathy (CAA), parenchymal amyloid deposition, and neurofibrillary tangles. Transgenic mice expressing wild-type and mutant forms of the BRI(2) protein, Bri ( 2 ) knock-in mutant mice, and Bri ( 2 ) gene knock-out mice have been developed. Transgenic mice expressing a human FDD-mutated form of the BRI ( 2 ) gene have partially reproduced the neuropathological lesions observed in FDD. These mice develop extensive CAA, parenchymal amyloid deposition, and neuroinflammation in the central nervous system. These animal models allow the study of the molecular mechanism(s) underlying the neuronal dysfunction in these diseases and allow the development of potential therapeutic approaches for these and related neurodegenerative conditions. In this review, a comprehensive account of the advances in the development of animal models for FBD and FDD and of their relevance to the study of Alzheimer disease is presented.
    Brain Structure and Function 09/2009; 214(2-3):235-44. DOI:10.1007/s00429-009-0221-9 · 4.57 Impact Factor