Article

Monocyte scintigraphy in rheumatoid arthritis: the dynamics of monocyte migration in immune-mediated inflammatory disease.

Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, Noord Holland, The Netherlands.
PLoS ONE (Impact Factor: 3.73). 01/2009; 4(11):e7865. DOI: 10.1371/journal.pone.0007865
Source: PubMed

ABSTRACT Macrophages are principal drivers of synovial inflammation in rheumatoid arthritis (RA), a prototype immune-mediated inflammatory disease. Conceivably, synovial macrophages are continuously replaced by circulating monocytes in RA. Animal studies from the 1960s suggested that macrophage replacement by monocytes is a slow process in chronic inflammatory lesions. Translation of these data into the human condition has been hampered by the lack of available techniques to analyze monocyte migration in man.
We developed a technique that enabled us to analyze the migration of labelled autologous monocytes in RA patients using single photon emission computer tomography (SPECT). We isolated CD14+ monocytes by CliniMACS in 8 patients and labeled these with technetium-99m (99mTc-HMPAO). Monocytes were re-infused into the same patient. Using SPECT we calculated that a very small but specific fraction of 3.4 x 10(-3) (0.95-5.1 x 10(-3)) % of re-infused monocytes migrated to the inflamed joints, being detectable within one hour after re-infusion.
The results indicate monocytes migrate continuously into the inflamed synovial tissue of RA patients, but at a slow macrophage-replacement rate. This suggests that the rapid decrease in synovial macrophages that occurs after antirheumatic treatment might rather be explained by an alteration in macrophage retention than in monocyte influx and that RA might be particularly sensitive to treatments targeting inflammatory cell retention.

0 Bookmarks
 · 
131 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic mechanisms integrate genetic and environmental causes of disease, but comprehensive genome-wide analyses of epigenetic modifications have not yet demonstrated robust association with common diseases. Using Illumina HumanMethylation450 arrays on 354 anti-citrullinated protein antibody-associated rheumatoid arthritis cases and 337 controls, we identified two clusters within the major histocompatibility complex (MHC) region whose differential methylation potentially mediates genetic risk for rheumatoid arthritis. To reduce confounding factors that have hampered previous epigenome-wide studies, we corrected for cellular heterogeneity by estimating and adjusting for cell-type proportions in our blood-derived DNA samples and used mediation analysis to filter out associations likely to be a consequence of disease. Four CpGs also showed an association between genotype and variance of methylation. The associations for both clusters replicated at least one CpG (P < 0.01), with the rest showing suggestive association, in monocyte cell fractions in an independent cohort of 12 cases and 12 controls. Thus, DNA methylation is a potential mediator of genetic risk.
    Nature Biotechnology 01/2013; · 32.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE. A review of the innovative role molecular imaging plays in musculoskeletal radiology is provided. Musculoskeletal molecular imaging is under development in four key areas: imaging the activity of osteoblasts and osteoclasts, imaging of molecular and cellular biomarkers of arthritic joint destruction, cellular imaging of osteomyelitis, and imaging generators of musculoskeletal pain. CONCLUSION. Together, these applications suggest that next-generation musculoskeletal radiology will facilitate quantitative visualization of molecular and cellular biomarkers, an advancement that appeared futuristic just a decade ago.
    American Journal of Roentgenology 06/2013; · 2.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) are highly efficient antigen-presenting cells. The migratory properties of DCs give them the capacity to be a sentinel of the body and the vital role in the induction and regulation of adaptive immune responses. Therefore, it is important to understand the mechanisms in control of migration of DCs to lymphoid and nonlymphoid tissues. This may provide us novel insight into the clinical treatment of diseases such as autoimmune disease, infectious disease, and tumor. The chemotactic G protein-coupled receptors (GPCR) play a vital role in control of DCs migration. Here, we reviewed the recent advances regarding the role of GPCR in control of migration of subsets of DCs, with a focus on the chemokine receptors. Understanding subsets of DCs migration could provide a rational basis for the design of novel therapies in various clinical conditions.
    BioMed research international. 01/2014; 2014:738253.

Full-text (2 Sources)

View
49 Downloads
Available from
May 27, 2014