Monocyte Scintigraphy in Rheumatoid Arthritis: The Dynamics of Monocyte Migration in Immune-Mediated Inflammatory Disease

Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, Noord Holland, The Netherlands.
PLoS ONE (Impact Factor: 3.53). 11/2009; 4(11):e7865. DOI: 10.1371/journal.pone.0007865
Source: PubMed

ABSTRACT Macrophages are principal drivers of synovial inflammation in rheumatoid arthritis (RA), a prototype immune-mediated inflammatory disease. Conceivably, synovial macrophages are continuously replaced by circulating monocytes in RA. Animal studies from the 1960s suggested that macrophage replacement by monocytes is a slow process in chronic inflammatory lesions. Translation of these data into the human condition has been hampered by the lack of available techniques to analyze monocyte migration in man.
We developed a technique that enabled us to analyze the migration of labelled autologous monocytes in RA patients using single photon emission computer tomography (SPECT). We isolated CD14+ monocytes by CliniMACS in 8 patients and labeled these with technetium-99m (99mTc-HMPAO). Monocytes were re-infused into the same patient. Using SPECT we calculated that a very small but specific fraction of 3.4 x 10(-3) (0.95-5.1 x 10(-3)) % of re-infused monocytes migrated to the inflamed joints, being detectable within one hour after re-infusion.
The results indicate monocytes migrate continuously into the inflamed synovial tissue of RA patients, but at a slow macrophage-replacement rate. This suggests that the rapid decrease in synovial macrophages that occurs after antirheumatic treatment might rather be explained by an alteration in macrophage retention than in monocyte influx and that RA might be particularly sensitive to treatments targeting inflammatory cell retention.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rheumatoid arthritis (RA) is an autoimmune disease, which is associated with systemic and chronic inflammation of the joints, resulting in synovitis and pannus formation. For several decades, the assessment of RA has been limited to conventional radiography, assisting in the diagnosis and monitoring of disease. Nevertheless, conventional radiography has poor sensitivity in the detection of the inflammatory process that happens in the initial stages of RA. In the past years, new drugs that significantly decrease the progression of RA have allowed a more efficient treatment. Nuclear Medicine provides functional assessment of physiological processes and therefore has significant potential for timely diagnosis and adequate follow-up of RA. Several single photon emission computed tomography (SPECT) and positron emission tomography (PET) radiopharmaceuticals have been developed and applied in this field. The use of hybrid imaging, which permits computed tomography (CT) and nuclear medicine data to be acquired and fused, has increased even more the diagnostic accuracy of Nuclear Medicine by providing anatomical localization in SPECT/CT and PET/CT studies. More recently, fusion of PET with magnetic resonance imaging (PET/MRI) was introduced in some centers and demonstrated great potential. In this article, we will review studies that have been published using Nuclear Medicine for RA and examine key topics in the area.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background. Macrophages and synovial fibroblasts (SF) are two major cells implicated in the pathogenesis of rheumatoid arthritis (RA). SF could be a source of cytokines and growth factors driving macrophages survival and activation. Here, we studied the effect of SF on monocyte viability and phenotype. Methods. SF were isolated from synovial tissue of RA patients and CD14+ cells were isolated from peripheral blood of healthy donors. SF conditioned media were collected after 24 hours of culture with or without stimulation with TNFα or IL-1β. Macrophages polarisation was studied by flow cytometry. Results. Conditioned medium from SF significantly increased monocytes viability by 60% compared to CD14+ cells cultured in medium alone (P < 0.001). This effect was enhanced using conditioned media from IL-1β and TNFα stimulated SF. GM-CSF but not M-CSF nor IL34 blocking antibodies was able to significantly decrease monocyte viability by 30% when added to the conditioned media from IL-1β and TNFα stimulated SF (P < 0.001). Finally, monocyte cultured in presence of SF conditioned media did not exhibit a specific M1 or M2 phenotype. Conclusion. Overall, rheumatoid arthritis synovial fibroblasts stimulated with proinflammatory cytokines (IL-1β and TNFα) promote monocyte viability via GM-CSF but do not induce a specific macrophage polarization.
    Mediators of Inflammation 01/2014; 2014:241840. DOI:10.1155/2014/241840 · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) are highly efficient antigen-presenting cells. The migratory properties of DCs give them the capacity to be a sentinel of the body and the vital role in the induction and regulation of adaptive immune responses. Therefore, it is important to understand the mechanisms in control of migration of DCs to lymphoid and nonlymphoid tissues. This may provide us novel insight into the clinical treatment of diseases such as autoimmune disease, infectious disease, and tumor. The chemotactic G protein-coupled receptors (GPCR) play a vital role in control of DCs migration. Here, we reviewed the recent advances regarding the role of GPCR in control of migration of subsets of DCs, with a focus on the chemokine receptors. Understanding subsets of DCs migration could provide a rational basis for the design of novel therapies in various clinical conditions.
    03/2014; 2014:738253. DOI:10.1155/2014/738253

Full-text (3 Sources)

Available from
May 27, 2014