Systems-level dynamic analyses of fate change in murine embryonic stem cells

Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
Nature (Impact Factor: 42.35). 11/2009; 462(7271):358-62. DOI: 10.1038/nature08575
Source: PubMed

ABSTRACT Molecular regulation of embryonic stem cell (ESC) fate involves a coordinated interaction between epigenetic, transcriptional and translational mechanisms. It is unclear how these different molecular regulatory mechanisms interact to regulate changes in stem cell fate. Here we present a dynamic systems-level study of cell fate change in murine ESCs following a well-defined perturbation. Global changes in histone acetylation, chromatin-bound RNA polymerase II, messenger RNA (mRNA), and nuclear protein levels were measured over 5 days after downregulation of Nanog, a key pluripotency regulator. Our data demonstrate how a single genetic perturbation leads to progressive widespread changes in several molecular regulatory layers, and provide a dynamic view of information flow in the epigenome, transcriptome and proteome. We observe that a large proportion of changes in nuclear protein levels are not accompanied by concordant changes in the expression of corresponding mRNAs, indicating important roles for translational and post-translational regulation of ESC fate. Gene-ontology analysis across different molecular layers indicates that although chromatin reconfiguration is important for altering cell fate, it is preceded by transcription-factor-mediated regulatory events. The temporal order of gene expression alterations shows the order of the regulatory network reconfiguration and offers further insight into the gene regulatory network. Our studies extend the conventional systems biology approach to include many molecular species, regulatory layers and temporal series, and underscore the complexity of the multilayer regulatory mechanisms responsible for changes in protein expression that determine stem cell fate.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Embryonic stem cells (ESCs) possess a distinct chromatin conformation maintained by specialized chromatin proteins. To identify chromatin regulators in ESCs, we developed a simple biochemical assay named D-CAP (differential chromatin-associated proteins), using brief micrococcal nuclease digestion of chromatin, followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Using D-CAP, we identified several differentially chromatin-associated proteins between undifferentiated and differentiated ESCs, including the chromatin remodeling protein SMARCD1. SMARCD1 depletion in ESCs led to altered chromatin and enhanced endodermal differentiation. Gene expression and chromatin immunoprecipitation sequencing (ChIP-seq) analyses suggested that SMARCD1 is both an activator and a repressor and is enriched at developmental regulators and that its chromatin binding coincides with H3K27me3. SMARCD1 knockdown caused H3K27me3 redistribution and increased H3K4me3 around the transcription start site (TSS). One of the identified SMARCD1 targets was Klf4. In SMARCD1-knockdown clones, KLF4, as well as H3K4me3 at the Klf4 locus, remained high and H3K27me3 was abolished. These results propose a role for SMARCD1 in restricting pluripotency and activating lineage pathways by regulating H3K27 methylation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 03/2015; 10(12). DOI:10.1016/j.celrep.2015.02.064 · 7.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a driver for many biological processes, phosphorylation remains an area of intense research interest. Advances in multiplexed quantitation utilizing isobaric tags (e.g., TMT and iTRAQ) have the potential to create a new paradigm in quantitative proteomics. New instrumentation and software are propelling these multiplexed workflows forward, which results in more accurate, sensitive and reproducible quantitation across tens of thousands of phosphopeptides. This study assesses the performance of multiplexed quantitative phosphoproteomics on the Orbitrap Fusion mass spectrometer. Utilizing a two-phosphoproteome model of precursor ion interference, we assessed the accuracy of phosphopeptide quantitation across a variety of experimental approaches. These methods included the use of synchronous precursor selection (SPS) to enhance TMT reporter ion intensity and accuracy. We found that i) ratio distortion remained a problem for phosphopeptide analysis in multiplexed quantitative workflows, ii) ratio distortion can be overcome by the use of an SPS-MS3 scan, iii) interfering ions generally possessed a different charge state than the target precursor, and iv) selecting only the phosphate neutral loss peak (single notch) for the MS3 scan still provided accurate ratio measurements. Remarkably, these data suggest that the underlying cause of interference may not be due to co-eluting and co-fragmented peptides, but instead from consistent, low level background fragmentation. Finally, as a proof-of-concept 10-plex experiment, we compared phosphopeptide levels from five murine brains to five livers. In total, the SPS-MS3 method quantified 38,247 phosphopeptides, corresponding to 11,000 phosphorylation sites. With 10 measurements recorded for each phosphopeptide, this equates to more than 628,000 binary comparisons collected in less than forty-eight hours.
    Analytical Chemistry 12/2014; DOI:10.1021/ac503934f · 5.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human pluripotent stem cells (hPSCs) display a very short G1 phase and rapid proliferation kinetics. Regulation of the cell cycle, which is linked to pluripotency and differentiation, is dependent on the stem cell environment, particularly on culture density. This link has been so far empirical and central to disparities in the growth rates and fractions of self-renewing hPSCs residing in different cycle phases. In this study, hPSC cycle progression in conjunction with proliferation and differentiation were comprehensively investigated for different culture densities. Cell proliferation decelerated significantly at densities beyond 50×104 cells/cm2. Correspondingly, the G1 fraction increased from 25% up to 60% at densities greater than 40×104 cells/cm2 while still hPSC pluripotency marker expression was maintained. In parallel, expression of the cycle inhibitor CDKN1A (p21) was increased, while that of p27 and p53 did not change significantly. After 4 days of culture in an unconditioned medium, greater heterogeneity was noted in the differentiation outcomes and was limited by reducing the density variation. A quantitative model was constructed for self-renewing and differentiating hPSC ensembles to gain a better understanding of the link between culture density, cycle progression, and stem cell state. Results for multiple hPSC lines and medium types corroborated experimental findings. Media commonly used for maintenance of self-renewing hPSCs exhibited the slowest kinetics of induction of differentiation (kdiff), while BMP4 supplementation led to 14-fold higher kdiff values. Spontaneous differentiation in a growth factor-free medium exhibited the largest variation in outcomes at different densities. In conjunction with the quantitative framework, our findings will facilitate rationalizing the selection of cultivation conditions for the generation of stem cell therapeutics.
    Stem Cells and Development 11/2014; 24(7). DOI:10.1089/scd.2014.0384 · 4.20 Impact Factor