Gamma-aminobutyric acid type A receptor alpha 4 subunit knockout mice are resistant to the amnestic effect of isoflurane.

Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California 94143-0464, USA.
Anesthesia and analgesia (Impact Factor: 3.08). 12/2009; 109(6):1816-22. DOI: 10.1213/ANE.0b013e3181bf6ae6
Source: PubMed

ABSTRACT General anesthesia produces multiple end points including immobility, hypnosis, sedation, and amnesia. Tonic inhibition via gamma-aminobutyric acid type A receptors (GABA(A)-Rs) may play a role in mediating behavioral end points that are suppressed by low concentrations of anesthetics (e.g., hypnosis and amnesia). GABA(A)-Rs containing the alpha4 subunit are highly concentrated in the hippocampus and thalamus, and when combined with delta subunits they mediate tonic inhibition, which is sensitive to low concentrations of isoflurane.
In this study, we used a GABA(A) alpha4 receptor knockout mouse line to evaluate the contribution of alpha4-containing GABA(A)-Rs to the effects of immobility, hypnosis, and amnesia produced by isoflurane. Knockout mice and their wild-type counterparts were assessed on 3 behavioral tests: conditional fear (to assess amnesia), loss of righting reflex (to assess hypnosis), and the minimum alveolar concentration of inhaled anesthetic necessary to produce immobility in response to noxious stimulation in 50% of subjects (to assess immobility).
Genetic inactivation of the alpha4 subunit reduced the amnestic effect of isoflurane, minimally affected loss of righting reflex, and had no effect on immobility.
These results lend support to the hypothesis that different sites of action mediate different anesthetic end points and suggest that alpha4-containing GABA(A)-Rs are important mediators of the amnestic effect of isoflurane on hippocampal-dependent declarative memory.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Several neurotransmitter systems have been hypothesized to be involved in the in vivo effects of volatile anesthetics. Drug discrimination may represent a novel procedure to explore the neurochemical systems underlying the sub-anesthetic behavioral effects of these compounds. The purpose of the present study was to examine the contribution of GABA(A) and NMDA receptors to the discriminative stimulus effects of a behaviorally active sub-anesthetic concentration of isoflurane vapor. Sixteen B6SJLF1/J mice were trained to discriminate 10 min of exposure to 6,000 ppm isoflurane vapor from air. Substitution tests were conducted with volatile anesthetics, abused vapors, GABA(A) positive modulators, NMDA antagonists, and nitrous oxide. The volatile anesthetics, enflurane and halothane as well as the abused vapors toluene and 1,1,1-trichloroethane fully substituted for isoflurane. The GABA(A) positive modulators, pentobarbital, midazolam, and zaleplon but not the direct GABA(A) agonist, muscimol, produced high levels of partial substitution for isoflurane. The anticonvulsant, valproic acid fully substituted for isoflurane but a second, tiagabine, did not substitute. The competitive NMDA antagonist, CGS-19755, fully and the non-competitive NMDA antagonist, dizocilpine, partially substituted for isoflurane. The glycine-site NMDA antagonist, L-701,324 did not substitute for isoflurane. Gamma-hydroxybutric acid and nitrous oxide gas also failed to substitute for isoflurane. The discriminative stimulus effects of sub-anesthetic concentrations of isoflurane vapor are shared by other vapor anesthetics and abused inhalants. The discriminative stimulus effects of isoflurane vapor appear to be mediated by both positive allosteric modulation of GABA(A) receptors as well as antagonism of NMDA receptors.
    Psychopharmacology 12/2010; 212(4):559-69. · 4.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: γ-Aminobutyric acid type A receptors (GABAA-Rs) are considered to be the primary molecular targets of injectable anesthetics such as propofol, etomidate and the neurosteriod, alphaxalone. A number of studies have sought to understand the specific GABAA-R subtypes involved in the mechanism of action of these three drugs. Here, we investigated the role of α4-subunit containing GABAA-Rs in the neurobehavioral responses to these drugs. Drug responses in α4 subunit knockout (KO) mice were compared to wild type (WT) littermate controls. While etomidate and propofol are currently used as injectable anesthetics, alphaxalone belongs to the class of neurosteroid drugs having anesthetic effects. Low dose effects of etomidate and alphaxalone were studied using an open field assay. The moderate and high dose effects of all three anesthetics were measured using the rotarod and loss of righting reflex assays, respectively. The locomotor stimulatory effect of alphaxalone was reduced significantly in α4 KO mice compared to WT controls. Neither the low dose sedating effect of etomidate, nor the moderate/high dose effect of any of the drugs differed between genotypes. These results suggest that α4 subunit-containing GABAA-Rs are required for the low dose, locomotor stimulatory effect of alphaxalone but are not required for the sedating effect of etomidate or the moderate/high dose effects of etomidate, propofol or alphaxalone on motor ataxia and loss of righting reflex.
    Neurochemical Research 09/2013; · 2.13 Impact Factor
  • Source
    Anesthesiology 03/2010; 112(4):786-93. · 5.16 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014