Gamma-aminobutyric acid type A receptor alpha 4 subunit knockout mice are resistant to the amnestic effect of isoflurane.

Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California 94143-0464, USA.
Anesthesia and analgesia (Impact Factor: 3.08). 12/2009; 109(6):1816-22. DOI: 10.1213/ANE.0b013e3181bf6ae6
Source: PubMed

ABSTRACT General anesthesia produces multiple end points including immobility, hypnosis, sedation, and amnesia. Tonic inhibition via gamma-aminobutyric acid type A receptors (GABA(A)-Rs) may play a role in mediating behavioral end points that are suppressed by low concentrations of anesthetics (e.g., hypnosis and amnesia). GABA(A)-Rs containing the alpha4 subunit are highly concentrated in the hippocampus and thalamus, and when combined with delta subunits they mediate tonic inhibition, which is sensitive to low concentrations of isoflurane.
In this study, we used a GABA(A) alpha4 receptor knockout mouse line to evaluate the contribution of alpha4-containing GABA(A)-Rs to the effects of immobility, hypnosis, and amnesia produced by isoflurane. Knockout mice and their wild-type counterparts were assessed on 3 behavioral tests: conditional fear (to assess amnesia), loss of righting reflex (to assess hypnosis), and the minimum alveolar concentration of inhaled anesthetic necessary to produce immobility in response to noxious stimulation in 50% of subjects (to assess immobility).
Genetic inactivation of the alpha4 subunit reduced the amnestic effect of isoflurane, minimally affected loss of righting reflex, and had no effect on immobility.
These results lend support to the hypothesis that different sites of action mediate different anesthetic end points and suggest that alpha4-containing GABA(A)-Rs are important mediators of the amnestic effect of isoflurane on hippocampal-dependent declarative memory.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N-methyl-D-aspartate (NMDA) receptors are important in mediating excitatory neurotransmission in the nervous system. They are preferentially inhibited by some general anesthetics and have, therefore, been implied in the mediation of their effects. This review summarizes the main research findings available related to NMDA receptors and their role in anesthesia. The contribution of NMDA receptors to the anesthetized state is discussed separately for each of its components: amnesia, analgesia, unconsciousness and immobility. Anesthetic-induced unconsciousness and immobility have received the most attention in the research community and are the main focus of this review. In the overall perspective, however, studies using pharmacological or electrophysiological approaches have failed to reach definitive conclusions regarding the contribution of NMDA receptors to these anesthetic endpoints. None of the studies have specifically addressed the role of NMDA receptors in the amnestic effect of general anesthetics, and the few available data are (at best) only indirect. NMDA receptor antagonism by general anesthetics may have a preventive anti-hyperalgesic effect. The only and most extensively used genetic tool to examine the role of NMDA receptors in anesthesia is global knockout of the GluN2A subunit of the NMDA receptor. These animals are resistant to many intravenous and inhalational anesthetics, but the interpretation of their phenotype is hindered by the secondary changes occurring in these animals after GluN2A knockout, which are themselves capable of altering anesthetic sensitivity. Generation of more sophisticated conditional knockout models targeting NMDA receptors is required to finally define their role in the mechanisms of anesthesia.
    European journal of pharmacology 12/2013; · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate changes in neurotransmission induced by a psychoactive beverage ayahuasca in the hippocampus and amygdala of naive rats. The level of monoamines, their main metabolites and amino acid neurotransmitters concentrations were quantified using high performance liquid chromatography (HPLC). Four groups of rats were employed: saline-treated and rats receiving 250, 500 and 800 mg/kg of ayahuasca infusion (gavage). Animals were killed 40 min after drug ingestion and the structures stored at -80 °C until HPLC assay. The data from all groups were compared using Analysis of variance and Scheffé as post test and P < 0.05 was accepted as significant. The results showed decreased concentrations of glycine (GLY) (0.13 ± 0.03 vs 0.29 ± 0.07, P < 0.001) and γ-aminobutyric acid (GABA) (1.07 ± 0.14 vs 1.73 ± 0.25, P < 0.001) in the amygdala of rats that received 500 of ayahuasca. Animals that ingested 800 mg/kg of ayahuasca also showed a reduction of GLY level (0.11 ± 0.01 vs 0.29 ± 0.07, P < 0.001) and GABA (0.98 ± 0.06 vs 1.73 ± 0.25, P < 0.001). In the hippocampus, increased GABA levels were found in rats that received all ayahuasca doses: 250 mg/kg (1.29 ± 0.19 vs 0.84 ± 0.21, P < 0.05); 500 mg/kg (2.23 ± 038 vs 084 ± 0.21, P < 0.05) and 800 mg/kg (1.98 ± 0.92 vs 0.84 ± 0.21, P < 0.05). In addition, an increased utilization rate of all monoamines was found in the amygdala after ayahuasca administration in doses: 250 mg/kg (noradrenaline: 0.16 ± 0.02 vs 0.36 ± 0.06, P < 0.01; dopamine: 0.39 ± 0.012 vs 2.39 ± 0.84, P < 0.001; serotonin: 1.02 ± 0.22 vs 4.04 ± 0.91, P < 0.001), 500 mg/kg (noradrenaline: 0.08 ± 0.02 vs 0.36 ± 0.06, P < 0.001; dopamine: 0.33 ± 0.19 vs 2.39 ± 0.84, P < 0.001; serotonin: 0.59 ± 0.08 vs 4.04 ± 0.91, P < 0.001) and 800 mg/kg (noradrenaline: 0.16 ± 0.04 vs 0.36 ± 0.06, P < 0.001; dopamine: 0.84 ± 0.65 vs 2.39 ± 0.84, P < 0.05; serotonin: 0.36 ± 0.02 vs 4.04 ± 0.91, P < 0.001). Our data suggest increased release of inhibitory amino acids by the hippocampus and an increased utilization rate of monoamines by the amygdala after different doses of ayahuasca ingestion.
    World journal of biological chemistry. 11/2013; 4(4):141-7.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The α4 subunit of the GABAA receptor (GABAAR) is highly expressed in the thalamus where receptors containing the α4 and δ subunits are major mediators of tonic inhibition. The α4 subunit also exhibits considerable plasticity in a number of physiological and pathological conditions, raising questions about the expression of remaining GABAAR subunits when the α4 subunit is absent. Immunohistochemical studies of an α4 subunit knockout (KO) mouse revealed a substantial decrease in δ subunit expression in the ventrobasal nucleus of the thalamus as well as other forebrain regions where the α4 subunit is normally expressed. In contrast, several subunits associated primarily with phasic inhibition, including the α1 and γ2 subunits, were moderately increased. Intracellular localization of the δ subunit was also altered. While δ subunit labeling was decreased within the neuropil, some labeling remained in the cell bodies of many neurons in the ventrobasal nucleus. Confocal microscopy demonstrated co-localization of this labeling with an endoplasmic reticulum marker, and electron microscopy demonstrated increased immunogold labeling near the endoplasmic reticulum in the α4 KO mouse. These results emphasize the strong partnership of the δ and α4 subunit in the thalamus and suggest that the α4 subunit of the GABAAR plays a critical role in trafficking of the δ subunit to the neuronal surface. The findings also suggest that previously observed reductions in tonic inhibition in the α4 subunit KO mouse are likely to be related to alterations in δ subunit expression, in addition to loss of the α4 subunit.
    Neurochemical Research 12/2013; · 2.13 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014

Similar Publications