Adult-Born Hippocampal Neurons Are More Numerous, Faster Maturing, and More Involved in Behavior in Rats than in Mice

Unit on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 11/2009; 29(46):14484-95. DOI: 10.1523/JNEUROSCI.1768-09.2009
Source: PubMed

ABSTRACT Neurons are born throughout adulthood in the hippocampus and show enhanced plasticity compared with mature neurons. However, there are conflicting reports on whether or not young neurons contribute to performance in behavioral tasks, and there is no clear relationship between the timing of maturation of young neurons and the duration of neurogenesis reduction in studies showing behavioral deficits. We asked whether these discrepancies could reflect differences in the properties of young neurons in mice and rats. We report that young neurons in adult rats show a mature neuronal marker profile and activity-induced immediate early gene expression 1-2 weeks earlier than those in mice. They are also twice as likely to escape cell death, and are 10 times more likely to be recruited into learning circuits. This comparison holds true in two different strains of mice, both of which show high rates of neurogenesis relative to other background strains. Differences in adult neurogenesis are not limited to the hippocampus, as the density of new neocortical neurons was 5 times greater in rats than in mice. Finally, in a test of function, we find that the contribution of young neurons to fear memory is much greater in rats than in mice. These results reveal substantial differences in new neuron plasticity and function between these two commonly studied rodent species.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Prenatal exposure to vitamin D is thought to be critical for optimal fetal neurodevelopment, yet vitamin D deficiency is apparent in a growing proportion of pregnant women. The aim of this study was to determine whether a mouse model of vitamin D-deficiency alters fetal neurodevelopment. Female BALB/c mice were placed on either a vitamin D control (2195 IU/kg) or deficient (0 IU/kg) diet for five weeks prior to and during pregnancy. Fetal brains were collected at embryonic day (E) 14.5 or E17.5 for morphological and gene expression analysis. Vitamin D deficiency during pregnancy reduced fetal crown-rump length and head size. Moreover, lateral ventricle volume was reduced in vitamin D-deficient fetuses. Expression of neurotrophin genes brain-derived neurotrophic factor (Bdnf) and transforming growth factor-β1 (Tgf-β1) was altered, with Bdnf reduced at E14.5 and increased at E17.5 following vitamin D deficiency. Brain expression of forkhead box protein P2 (Foxp2), a gene known to be important in human speech and language, was also altered. Importantly, Foxp2 immunoreactive cells in the developing cortex were reduced in vitamin D-deficient female fetuses. At E17.5, brain tyrosine hydroxylase (TH) gene expression was reduced in females, as was TH protein localization (to identify dopamine neurons) in the substantianigra of vitamin D-deficient female fetuses. Overall, we show that prenatal vitamin D-deficiency leads to alterations in fetal mouse brain morphology and genes related to neuronal survival, speech and language development, and dopamine synthesis. Vitamin D appears to play an important role in mouse neurodevelopment. Copyright © 2015. Published by Elsevier B.V.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abused inhalants are voluntarily inhaled at high concentrations to produce intoxicating effects. Results from animal studies show that the abused inhalant toluene triggers behaviors, such as self-administration and conditioned place preference, which are commonly associated with addictive drugs. However, little is known about how toluene affects neurons within the nucleus accumbens (NAc), a brain region within the basal ganglia that mediates goal-directed behaviors and is implicated in the development and maintenance of addictive behaviors. Here we report that toluene inhibits a component of the after-hyperpolarization potential, and dose-dependently inhibits N-methyl-D-aspartate (NMDA)-mediated currents in rat NAc medium spiny neurons (MSN). Moreover, using the multivariate statistical technique, partial least squares discriminative analysis to analyze electrophysiological measures from rat NAc MSNs, we show that toluene induces a persistent depression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-mediated currents in one subtype of NAc MSNs, and that the electrophysiological features of MSN neurons predicts their sensitivity to toluene. The CB1 receptor antagonist AM281 blocked the toluene-induced long-term depression of AMPA currents, indicating that this process is dependent on endocannabinoid signaling. The neuronal identity of recorded cells was examined using dual histochemistry and shows that toluene-sensitive NAc neurons are dopamine D2 MSNs that express preproenkephalin mRNA. Overall, the results from these studies indicate that physiological characteristics obtained from NAc MSNs during whole-cell patch-clamp recordings reliably predict neuronal phenotype, and that the abused inhalant toluene differentially depresses excitatory neurotransmission in NAc neuronal subtypes. © 2015 Society for the Study of Addiction.
    Addiction Biology 04/2015; DOI:10.1111/adb.12235 · 5.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Adult neurogenesis in the subgranular zone of the hippocampus is involved in learning, memory, and mood control. Decreased hippocampal neurogenesis elicits significant behavioral changes, including cognitive impairment and depression. Inflammatory bowel disease (IBD) is a group of chronic inflammatory conditions of the intestinal tract, and cognitive dysfunction and depression frequently occur in patients suffering from this disorder. We therefore tested the effects of chronic intestinal inflammation on hippocampal neurogenesis. Methods The dextran sodium sulfate (DSS) mouse model of IBD was used. Mice were treated with multiple-cycle administration of 3% wt/vol DSS in drinking water on days 1 to 5, 8 to 12, 15 to 19, and 22 to 26. Mice were sacrificed on day 7 (acute phase of inflammation) or day 29 (chronic phase of inflammation) after the beginning of the treatment. Results During the acute phase of inflammation, we found increased plasma levels of IL-6 and TNF-α and increased expression of Iba1, a marker of activated microglia, accompanied by induced IL-6 and IL-1β, and the cyclin-dependent kinase inhibitor p21Cip1 (p21) in hippocampus. During the chronic phase of inflammation, plasma levels of IL-6 were elevated. In the hippocampus, p21 protein levels were continued to be induced. Furthermore, markers of stem/early progenitor cells, including nestin and brain lipid binding protein (BLBP), and neuronal marker doublecortin (DCX) were all down-regulated, whereas glial fibrillary acidic protein (GFAP), a marker for astroglia, was induced. In addition, the number of proliferating precursors of neuronal lineage assessed by double Ki67 and DCX staining was significantly diminished in the hippocampus of DSS-treated animals, indicating decreased production of new neurons. Conclusions We show for the first time that chronic intestinal inflammation alters hippocampal neurogenesis. As p21 arrests early neuronal progenitor proliferation, it is likely that p21 induction during acute phase of inflammation resulted in the reduction of hippocampal neurogenesis observed later, on day 29, after the beginning of DSS treatment. The reduction in hippocampal neurogenesis might underlie the behavioral manifestations that occur in patients with IBD.
    Journal of Neuroinflammation 04/2015; 12. DOI:10.1186/s12974-015-0281-0 · 4.90 Impact Factor

Full-text (2 Sources)

Available from
Jul 22, 2014