Article

WNT5A mutations in patients with autosomal dominant Robinow syndrome

Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA.
Developmental Dynamics (Impact Factor: 2.67). 01/2009; 239(1):327-37. DOI: 10.1002/dvdy.22156
Source: PubMed

ABSTRACT Robinow syndrome is a skeletal dysplasia with both autosomal dominant and autosomal recessive inheritance patterns. It is characterized by short stature, limb shortening, genital hypoplasia, and craniofacial abnormalities. The etiology of dominant Robinow syndrome is unknown; however, the phenotypically more severe autosomal recessive form of Robinow syndrome has been associated with mutations in the orphan tyrosine kinase receptor, ROR2, which has recently been identified as a putative WNT5A receptor. Here, we show that two different missense mutations in WNT5A, which result in amino acid substitutions of highly conserved cysteines, are associated with autosomal dominant Robinow syndrome. One mutation has been found in all living affected members of the original family described by Meinhard Robinow and another in a second unrelated patient. These missense mutations result in decreased WNT5A activity in functional assays of zebrafish and Xenopus development. This work suggests that a WNT5A/ROR2 signal transduction pathway is important in human craniofacial and skeletal development and that proper formation and growth of these structures is sensitive to variations in WNT5A function.

Download full-text

Full-text

Available from: Stephen Carl Ekker, Jul 02, 2015
1 Follower
 · 
266 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wnts control mammalian developmental morphogenesis and are critical for adult stem cell maintenance. Wnts initiate several intracellular signaling cascades, such as Wnt/β-catenin-, Wnt/Ca(2+)- and Wnt/ROR2-signaling. Signaling preference of Wnts for these various pathways is thought to depend on the repertoire of receptors present on recipient cells. Here, we propose a further refinement of this receptor model and hypothesize that Wnt signaling specificity depends on co-receptor recruitment upon binding of Wnt to Frizzled receptor molecules. In this model, recruitment of LRP5/6 leads to activation of Wnt/β-catenin signaling, whereas signaling through other pathways is mediated by recruiting ROR2.
    FEBS letters 09/2010; 584(18):3850-4. DOI:10.1016/j.febslet.2010.08.030 · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brachydactyly type B (BDB1) and Robinow syndrome (RRS) are two skeletal disorders caused by mutations in ROR2, a co-receptor of Wnt5a. Wnt5a/Ror2 can activate multiple branches of non-canonical Wnt signaling, but it is unclear which branch(es) mediates Wnt5a/Ror2 function in limb skeletal development. Here, we provide evidence implicating the planar cell polarity (PCP) pathway as the downstream component of Wnt5a in the limb. We show that a mutation in the mouse PCP gene Vangl2 causes digit defects resembling the clinical phenotypes in BDB1, including loss of phalanges. Halving the dosage of Wnt5a in Vangl2 mutants enhances the severity and penetrance of the digit defects and causes long bone defects reminiscent of RRS, suggesting that Wnt5a and Vangl2 function in the same pathway and disruption of PCP signaling may underlie both BDB1 and RRS. Consistent with a role for PCP signaling in tissue morphogenesis, mutation of Vangl2 alters the shape and dimensions of early limb buds: the width and thickness are increased, whereas the length is decreased. The digit pre-chondrogenic condensates also become wider, thicker and shorter. Interestingly, altered limb bud dimensions in Vangl2 mutants also affect limb growth by perturbing the signaling network that regulates the balance between Fgf and Bmp signaling. Halving the dosage of Bmp4 partially suppresses the loss of phalanges in Vangl2 mutants, supporting the hypothesis that an aberrant increase in Bmp signaling is the cause of the brachydactyly defect. These findings provide novel insight into the signaling mechanisms of Wnt5a/Ror2 and the pathogenesis in BDB1 and RRS.
    Human Molecular Genetics 10/2010; 20(2):271-85. DOI:10.1093/hmg/ddq462 · 6.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wnts compromise a large family of secreted, hydrophobic glycoproteins that control a variety of developmental and adult processes in all metazoan organisms. Recent advances in the Wnt-signal studies have revealed that distinct Wnts activate multiple intracellular cascades that regulate cellular proliferation, differentiation, migration, and polarity. Although the mechanism by which Wnts regulate different pathways selectively remains to be clarified, evidence has accumulated that in addition to the formation of ligand-receptor pairs, phosphorylation of receptors, receptor-mediated endocytosis, acidification, and the presence of cofactors, such as heparan sulfate proteoglycans, are also involved in the activation of specific Wnt pathways. Here, we review the mechanism of activation in Wnt signaling initiated on the cell-surface membrane. In addition, the mechanisms for fine-tuning by cross talk between Wnt and other signaling are also discussed.
    International review of cell and molecular biology 01/2011; 291:21-71. DOI:10.1016/B978-0-12-386035-4.00002-1 · 4.52 Impact Factor