Article

Gating of nicotinic ACh receptors: latest insights into ligand binding and function.

Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Department of Health and Human Services, PO Box 12233, Research Triangle Park, NC 27709, USA.
The Journal of Physiology (Impact Factor: 4.38). 11/2009; 588(Pt 4):597-602. DOI: 10.1113/jphysiol.2009.182691
Source: PubMed

ABSTRACT Nicotinic acetylcholine receptors (nAChRs) are in the superfamily of cys-loop receptors, and are widely expressed in the nervous system where they participate in a variety of physiological functions, including regulating excitability and neurotransmitter release, as well as neuromuscular contraction. Members of the cys-loop family of receptors, which also includes the molluscan ACh-binding protein (AChBP), a soluble protein that is analogous to the extracellular ligand-binding domain of the cys-loop receptors, are pentameric assemblies of five subunits, with each subunit arranged around a central pore. The binding of ACh to the extracellular interface between two subunits induces channel opening. With the recent 4 A resolution of the Torpedo nAChR, and the crystal structure of the AChBP, much has been learned about the structure of the ligand-binding domain and the channel pore, as well as major structural rearrangements that may confer channel opening, including a major rearrangement of the C-loop within the ligand binding pocket, and perhaps other regions including the F-loop (the beta8-beta9 linker), the beta1-beta2 linker and the cys-loop. Here I will review the latest findings from my lab aimed at a further understanding of the function of the neuronal nAChR channels (and in particular the role of desensitization), and our search for novel AChBP species that may lead to a further understanding of the function of the cys-loop receptor family.

0 Bookmarks
 · 
115 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Molecular manipulations and targeted pharmacological studies provide a compelling picture of which nicotinic receptor subtypes are where in the central nervous system (CNS) and what happens if one activates or deletes them. However, understanding the physiological contribution of nicotinic receptors to endogenous acetylcholine (ACh) signaling in the CNS has proven a more difficult problem to solve. In this review, we provide a synopsis of the literature on the use of optogenetic approaches to control the excitability of cholinergic neurons and to examine the role of CNS nicotinic ACh receptors (nAChRs). As is often the case, this relatively new technology has answered some questions and raised others. Overall, we believe that optogenetic manipulation of cholinergic excitability in combination with some rigorous pharmacology will ultimately advance our understanding of the many functions of nAChRs in the brain.
    Reviews in the neurosciences 07/2014; DOI:10.1515/revneuro-2014-0032 · 3.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acetylcholine (ACh) can regulate neuronal excitability in the hippocampus, an important area in the brain for learning and memory, by acting on both nicotinic (nAChRs) and muscarinic ACh receptors. The primary cholinergic input to the hippocampus arises from the medial septum and diagonal band of Broca (MS-DBB), and we investigated how their activation regulated hippocampal synaptic plasticity. We found that activation of these endogenous cholinergic inputs can directly induce different forms of hippocampal synaptic plasticity with a timing precision in the millisecond range. Furthermore, we observed a prolonged enhancement of excitability both pre- and postsynaptically. Lastly we found that the presence of the α7 nAChR subtype to both pre- and postsynaptic sites appeared to be required to induce this plasticity. We propose that α7 nAChRs coordinate pre- and postsynaptic activities to induce glutamatergic synaptic plasticity, and thus provide a novel mechanism underlying physiological neuronal communication that could lead to timing-dependent synaptic plasticity in the hippocampus.This article is protected by copyright. All rights reserved
    The Journal of Physiology 05/2014; 592(19). DOI:10.1113/jphysiol.2014.273896 · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For a small library of natural products from marine sponges and ascidians, in silico docking to the Lymnaea stagnalis acetylcholine-binding protein (AChBP), a model for the ligand-binding domains of nicotinic acetylcholine receptors (nAChRs), was carried out and the possibility of complex formation was revealed. It was further experimentally confirmed via competition with radioiodinated α-bungarotoxin ([125I]-αBgt) for binding to AChBP of the majority of analyzed compounds. Alkaloids pibocin, varacin and makaluvamines С and G had relatively high affinities (Ki 0.5-1.3 μM). With the muscle-type nAChR from Torpedo californica ray and human neuronal α7 nAChR, heterologously expressed in the GH4C1 cell line, no competition with [125I]-αBgt was detected in four compounds, while the rest showed an inhibition. Makaluvamines (Ki ~ 1.5 μM) were the most active compounds, but only makaluvamine G and crambescidine 359 revealed a weak selectivity towards muscle-type nAChR. Rhizochalin, aglycone of rhizochalin, pibocin, makaluvamine G, monanchocidin, crambescidine 359 and aaptamine showed inhibitory activities in electrophysiology experiments on the mouse muscle and human α7 nAChRs, expressed in Xenopus laevis oocytes. Thus, our results confirm the utility of the modeling studies on AChBPs in a search for natural compounds with cholinergic activity and demonstrate the presence of the latter in the analyzed marine biological sources.
    Marine Drugs 04/2014; 12(4):1859-75. DOI:10.3390/md12041859 · 3.51 Impact Factor

Preview

Download
2 Downloads
Available from