Mimicking the Protein Access Channel to a Metal Center: Effect of a Funnel Complex on Dissociative versus Associative Copper Redox Chemistry

Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique, CNRS, UMR 6521, Université Européenne de Bretagne à Brest, 6 av. Le Gorgeu, 29238 Brest cedex, France.
Journal of the American Chemical Society (Impact Factor: 11.44). 11/2009; 131(49):17800-7. DOI: 10.1021/ja9055905
Source: PubMed

ABSTRACT The control of metal-ligand exchange in a confined environment is of primary importance for understanding thermodynamics and kinetics of the electron transfer process governing the reactivity of enzymes. This study reveals an unprecedented change of the Cu(II)/Cu(I) binding and redox properties through a subtle control of the access to the labile site by a protein channel mimic. The cavity effect was estimated from cyclic voltammetry investigations by comparison of two complexes displaying the same coordination sphere (tmpa) and differing by the presence or absence of a calix[6]arene cone surrounding the metal labile site L. Effects on thermodynamics are illustrated by important shifts of E(1/2) toward higher values for the calix complexes. This is ascribable to the protection of the labile site of the open-shell system from the polar medium. Such a cavity control also generates specific stabilizations. This is exemplified by an impressively exalted affinity of the calixarene system for MeCN, and by the detection of a kinetic intermediate, a noncoordinated DMF guest molecule floating inside the cone. Kinetically, a unique dissymmetry between the Cu(I) and Cu(II) ligand exchange capacity is highlighted. At the CV time scale, the guest interconversion is only feasible after reduction of Cu(II) to Cu(I). Such a redox-switch mechanism results from the blocking of the associative process at the Cu(II) state, imposed by the calixarene funnel. All of this suggests that the embedment of a reactive redox metal ion in a funnel-like cavity can play a crucial role in catalysis, particularly for metallo-enzymes associating electron transfer and ligand exchange.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: The first part of the study is devoted to the comparison between the doping effect of urea (a small molecule) and polyethylene glycol (PEG, a long-chain polymer) on the physical property of metallic gallium (Ga). The physical properties of the Ga composited in the two materials, Ga/urea and Ga/PEG, were investigated by scanning electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, differential scanning calorimetry, superconducting quantum interference device, and surface-enhanced Raman scattering spectra and compared with our previous results for the effect of macrocyclic hosts (e.g., cyclodextrins, calixarenes) on the physical modification of metallic Ga. Our data provide new direct evidence that the modification of physical properties of Ga is highly dependent on the nature of dopants used. For example, the addition of a small amount of urea causes a fundamental change in the crystallization behavior of Ga, and the presence of PEG results in the occurrence of a weak paramagnetism of Ga at high fields, both of which are completely different from the effect of other dopants. The other part of the study is devoted to demonstrating whether there is a significant difference in the oxidation process of metallic Ga and its composites. Our result gives a strong positive answer to the question. β- and γ-gallium oxide nanocrystals were obtained by sintering the Ga/urea composite at different temperatures and exhibited distinctive photoluminescence and photocatalysis properties. These results gave a strong impression that the introduction of different dopants leads metallic Ga to generate different features in microstructure, physical property, and especially chemical reactivity. We believe that the findings of this study have important implications for the development of inorganic materials.
    The Journal of Physical Chemistry C 10/2012; 116(43):22859–22866. DOI:10.1021/jp306318u · 4.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The design of biomimetic complexes for the modeling of metallo-enzyme active sites is a fruitful strategy for obtaining fundamental information and a better understanding of the molecular mechanisms at work in Nature's chemistry. The classical strategy for modeling metallo-sites relies on the synthesis of metal complexes with polydentate ligands that mimic the coordination environment encountered in the natural systems. However, it is well recognized that metal ion embedment in the proteic cavity has key roles not only in the recognition events but also in generating transient species and directing their reactivity. Hence, this review focuses on an important aspect common to enzymes, which is the presence of a pocket surrounding the metal ion reactive sites. Through selected examples, the following points are stressed: (i) the design of biomimetic cavity-based complexes, (ii) their corresponding host-guest chemistry, with a special focus on problems related to orientation and exchange mechanisms of the ligand within the host, (iii) cavity effects on the metal ion binding properties, including 1st, 2nd, and 3rd coordination spheres and hydrophobic effects and finally (iv) the impact these factors have on the reactivity of embedded metal ions. Important perspectives lie in the use of this knowledge for the development of selective and sensitive probes, new reactions, and green and efficient catalysts with bio-inspired systems.
    Chemical Society Reviews 10/2014; 44(2). DOI:10.1039/c4cs00211c · 30.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Improved methods for quickly identifying neutral organic compounds and differentiation of analytes with similar chemical structures are widely needed. We report a new approach to effectively "fingerprint" neutral organic molecules by using (19)F NMR and molecular containers. The encapsulation of analytes induces characteristic up- or downfield shifts of (19)F resonances that can be used as multidimensional parameters to fingerprint each analyte. The strategy can be achieved either with an array of fluorinated receptors or by incorporating multiple nonequivalent fluorine atoms in a single receptor. Spatial proximity of the analyte to the (19)F is important to induce the most pronounced NMR shifts and is crucial in the differentiation of analytes with similar structures. This new scheme allows for the precise and simultaneous identification of multiple analytes in a complex mixture.
    Journal of the American Chemical Society 07/2014; 136(30). DOI:10.1021/ja504110f · 11.44 Impact Factor