A noble function of BAY 11-7082: Inhibition of platelet aggregation mediated by an elevated cAMP-induced VASP, and decreased ERK2/JNK1 phosphorylations.

College of Biomedical Science and Engineering, and Regional Research Center, Inje University, Gimhae 200-701, Republic of Korea.
European journal of pharmacology (Impact Factor: 2.59). 11/2009; 627(1-3):85-91. DOI: 10.1016/j.ejphar.2009.11.005
Source: PubMed

ABSTRACT Platelets, though anucleated, possess several transcription factors, including NF-kappaB, that exert non-genomic functions regulating platelet activation. Since platelets have not only been recognized as central players of homeostasis, but also participated in pathological conditions such as thrombosis, atherosclerosis, and inflammation, we examined rat platelet NF-kappaB expression and evaluated the effects of anti-inflammatory drug BAY 11-7082, an inhibitor of NF-kappaB activation, in platelet physiology. Western blotting revealed that rat platelets express NF-kappaB. BAY 11-7082, dose dependently, inhibited collagen- or thrombin-induced-platelet aggregation. ATP release, TXB(2) formation, P-selectin expression, and intercellular Ca(2+) concentration activated by collagen were reduced in BAY 11-7082-treated platelets. BAY 11-7082 elevated intracellular levels of cAMP, but not cGMP, and its co-incubation with cAMP-activating agent (forskolin) or its hydrolyzing enzyme inhibitor (3-isobutyl-1-methylxanthine, IBMX), synergistically inhibited collagen-induced-platelet aggregation. In addition, vasodilator-stimulated-phosphoprotein (VASP) phosphorylation was enhanced in BAY 11-7082-treated platelets, which was partially inhibited by a protein kinase A (PKA) inhibitor, H-89. Moreover, while p38 mitogen-activated protein kinase (MAPK) was not affected, BAY 11-7082 attenuated c-Jun N-terminal kinase 1 (JNK1) and extracellular-signal-regulated protein kinase 2 (ERK2) phosphorylations. In conclusion, BAY 11-7082 inhibits platelet activation, granule secretion, and aggregation, and that this effect is mediated by inhibition of JNK1 and ERK2 phosphorylations, and partially by stimulation of cAMP-dependent PKA VASP phosphorylation. The ability of BAY 11-7082 to inhibit platelet function might be relevant in cases involving aberrant platelet activation where the drug is considered as anti-atherothrombosis, and anti-inflammatory therapy.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mushrooms possess untapped source of enormous natural compounds showing anti-inflammatory, antioxidant and anti-platelet activities. Paxillus curtisii, wild mushroom, is a rich source of curtisian E (CE) reported for neuroprotective effects; however, its anti-platelet effect was unknown. Here, therefore, we investigated the anti-platelet activity of CE in rat platelets. Curtisian E (12.5 - 200 μM) attenuated collagen (2.5 μg/ml), thrombin (0.1 U/ml) and ADP (10 μM) induced platelet aggregation in vitro. Likewise, CE diminished intracellular calcium and adenosine triphosphate (ATP) release in collagen activated platelets. Fibrinogen binding and fibronectin adhesion to platelets were also inhibited. While CE downregulated c-jun N-terminal kinase (JNK), extracellular related kinase (ERK), p38, and Akt dose dependently in collagen stimulated platelets, it upregulated intraplatelet cyclic adenosine monophosphate (cAMP) and vasodilator-stimulated-phosphoprotein (VASP) phosphorylation. Protein kinase A inhibitor (H-89) markedly inhibited p-VASP(157) protein expression, suggesting cAMP-PKA-VASP(157) pathway may mediate its anti-platelet effect and thus CE could be considered as a potential anti-thrombotic agent.
    Vascular Pharmacology 07/2013; · 3.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ethnopharmacological Relevance. Morus alba L. leaves (MAE) have been used in fork medicine for the treatment of beriberi, edema, diabetes, hypertension, and atherosclerosis. However, underlying mechanism of MAE on cardiovascular protection remains to be elucidated. Therefore, we investigated whether MAE affect platelet aggregation and thrombosis. Materials and Methods. The anti-platelet activity of MAE was studied using rat platelets. The extent of anti-platelet activity of MAE was assayed in collagen-induced platelet aggregation. ATP and serotonin release was carried out. The activation of integrin α IIb β 3 and phosphorylation of signaling molecules, including MAPK and Akt, were investigated with cytofluorometer and immunoblotting, respectively. The thrombus formation in vivo was also evaluated in arteriovenous shunt model of rats. Results. HPLC chromatographic analysis revealed that MAE contained rutin and isoquercetin. MAE dose-dependently inhibited collagen-induced platelet aggregation. MAE also attenuated serotonin secretion and thromboxane A2 formation. In addition, the extract in vivo activity showed that MAE at 100, 200, and 400 mg/kg significantly and dose-dependently attenuated thrombus formation in rat arterio-venous shunt model by 52.3% (P < 0.001), 28.3% (P < 0.01), and 19.1% (P < 0.05), respectively. Conclusions. MAE inhibit platelet activation, TXB2 formation, serotonin secretion, aggregation, and thrombus formation. The plant extract could be considered as a candidate to anti-platelet and antithrombotic agent.
    Evidence-based Complementary and Alternative Medicine 01/2014; 2014:639548. · 1.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Platelets express Toll-like receptors (TLRs) that recognise molecular components of pathogens and, in nucleated cells, elicit immune responses through nuclear factor-kappaB (NF-κB) activation. We have shown that NF-κB mediates platelet activation in response to classical agonists, suggesting that this transcription factor exerts non-genomic functions in platelets. The aim of this study was to determine whether NF-κB activation is a downstream signal involved in TLR2 and 4-mediated platelet responses. Aggregation and ATP release were measured with a Lumi-aggregometer. Fibrinogen binding, P-selectin and CD40 ligand (CD40L) levels and platelet-neutrophil aggregates were measured by cytometry. I kappa B alpha (IκBα) degradation and p65 phosphorylation were determined by Western blot and von Willebrand factor (vWF) by ELISA. Platelet stimulation with Pam3CSK4 or LPS resulted in IκBα degradation and p65 phosphorylation. These responses were suppressed by TLR2 and 4 blocking and synergised by thrombin. Aggregation, fibrinogen binding and ATP and vWF release were triggered by Pam3CSK4. LPS did not induce platelet responses per se, except for vWF release, but it did potentiate thrombin-induced aggregation, fibrinogen binding and ATP secretion. Pam3CSK4, but not LPS, induced P-selectin and CD40L expression and mixed aggregate formation. All of these responses, except for CD40L expression, were inhibited in platelets treated with the NF-κB inhibitors BAY 11-7082 or Ro 106-9920. TLR2 and 4 agonists trigger platelet activation responses through NF-κB. These data show another non-genomic function of NF-κB in platelets and highlight this molecule as a potential target to prevent platelet activation in inflammatory or infectious diseases.
    Thrombosis Research 12/2013; · 3.13 Impact Factor