Zinc mesoporphyrin induces rapid proteasomal degradation of hepatitis C nonstructural 5A protein in human hepatoma cells.

Liver-Biliary-Pancreatic Center and the Liver, Digestive Disease and Metabolism Laboratory, Carolinas Medical Center, Charlotte, North Carolina 28232-2861, USA.
Gastroenterology (Impact Factor: 12.82). 11/2009; 138(5):1909-19. DOI: 10.1053/j.gastro.2009.11.001
Source: PubMed

ABSTRACT The nonstructural 5A (NS5A) protein of hepatitis C virus (HCV) plays a critical role in HCV replication and is an attractive target for the therapy of HCV infection. So far, little is known about the posttranslational regulation of NS5A protein and its precise role in HCV RNA replication. Our objectives were to elucidate the down-regulation of NS5A protein and HCV RNA replication by zinc mesoporphyrin (ZnMP) and the mechanism by which this process occurs.
Human hepatoma cells expressing HCV proteins were used to investigate the posttranslational regulation of ZnMP on NS5A protein by Western blots and immunoprecipitation. Real-time quantitative reverse transcription polymerase chain reaction was used to determine the effects of ZnMP on HCV RNA replication.
ZnMP selectively and markedly down-regulated NS5A protein levels by increasing degradation of NS5A protein (half-life fell from 18.7 hours to 2.7 hours). The proteasome inhibitors epoxomicin and MG132 significantly abrogated degradation of NS5A protein by ZnMP without affecting levels of NS5A in the absence of ZnMP. Analysis of immunoprecipitates with an antiubiquitin antibody revealed polyubiquitination of NS5A, suggesting that ZnMP induces ubiquitination of NS5A protein. In addition, 10 micromol/L of ZnMP reduced HCV replication by approximately 63% in the Con1 replicon cells, approximately 70% in J6/Japanese fulminant hepatitis 1 HCV-transfected cells, and approximately 90% in J6/Japanese fulminant hepatitis 1 HCV-infected cells without affecting cell viability.
ZnMP produces a rapid and profound down-regulation of the NS5A protein by enhancing its polyubiquitination and proteasome-dependent catabolism. ZnMP may hold promise as a novel agent to treat HCV infection.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) infection often causes chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The development of a HCV cell culture system enabled us to investigate its whole HCV life cycle and develop a better understanding of the pathogenesis of this virus. Post-translational modification plays a crucial role in HCV replication and in the maturation of viral particles. There is growing evidence also suggesting that the ubiquitin-proteasome pathway and the ubiquitin-independent proteasome pathway are involved in the stability control of HCV proteins. Many viruses are known to manipulate the proteasome pathways to modulate the cell cycle, inhibit apoptosis, evade the immune system, and activate cell signaling, thereby contributing to persistent infection and viral carcinogenesis. The identification of functional interactions between HCV and the proteasome pathways will therefore shed new light on the life cycle and pathogenesis of HCV. This review summarizes the current knowledge on the involvement of the ubiquitin-dependent and -independent proteasome pathways in HCV infection and discusses the roles of these two distinct mechanisms in HCV pathogenesis.
    World journal of virology. 04/2012; 1(2):44-50.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper reviews the role of the catabolism of HCV and signaling proteins in HCV protection and the involvement of ethanol in HCV-proteasome interactions. HCV specifically infects hepatocytes, and intracellularly expressed HCV proteins generate oxidative stress, which is further exacerbated by heavy drinking. The proteasome is the principal proteolytic system in cells, and its activity is sensitive to the level of cellular oxidative stress. Not only host proteins, but some HCV proteins are degraded by the proteasome, which, in turn, controls HCV propagation and is crucial for the elimination of the virus. Ubiquitylation of HCV proteins usually leads to the prevention of HCV propagation, while accumulation of undegraded viral proteins in the nuclear compartment exacerbates infection pathogenesis. Proteasome activity also regulates both innate and adaptive immunity in HCV-infected cells. In addition, the proteasome/immunoproteasome is activated by interferons, which also induce "early" and "late" interferon-sensitive genes (ISGs) with anti-viral properties. Cleaving viral proteins to peptides in professional immune antigen presenting cells and infected ("target") hepatocytes that express the MHC class I-antigenic peptide complex, the proteasome regulates the clearance of infected hepatocytes by the immune system. Alcohol exposure prevents peptide cleavage by generating metabolites that impair proteasome activity, thereby providing escape mechanisms that interfere with efficient viral clearance to promote the persistence of HCV-infection.
    Biomolecules. 12/2014; 4(4):885-896.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Texts governing clinical research are regularly revised in French law. The knowledge of administrative procedures to enable studies should be available to all interested clinicians. University hospitals are privileged with dedicated structures providing methodological and administrative support but which are sometimes ignored or underutilized. In this paper, we propose to define the categories of clinical research, their respective administrative framework and the steps and documents required for their realization in France. Finally, we specify some rules to follow in order to enable the communication of scientific results in international journals.
    Néphrologie & Thérapeutique 06/2011; 7(3):148-153. · 0.55 Impact Factor


Available from