Periodontal disease and association with diabetes mellitus and diabetes: clinical implications.

State University of New York at Buffalo, USA.
Journal of dental hygiene: JDH / American Dental Hygienists' Association 01/2009; 83(4):186-7.
Source: PubMed
4 Reads
  • Source
    • "This disease is characterized by the progressive destruction of the tooth supporting apparatus and often leads to tooth loss in adults. In addition, chronic infections with periodontal pathogens have been linked to the risk for systemic health conditions such as cardiovascular, diabetic, respiratory, and arthritic diseases (Beck et al., 2008; Genco, 2009; Gomes-Filho et al., 2009; Genco and Van Dyke, 2010; Scher et al., 2012). A group of bacteria known as the “red complex” comprising Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia has been strongly implicated in the initiation and progression of periodontitis (Socransky et al., 1998). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein modification with complex glycans is increasingly being recognized in many pathogenic and non-pathogenic bacteria, and is now thought to be central to the successful life-style of those species in their respective hosts. This review aims to convey current knowledge on the extent of protein glycosylation in periodontal pathogenic bacteria and its role in the modulation of the host immune responses. The available data show that surface glycans of periodontal bacteria orchestrate dendritic cell cytokine responses to drive T cell immunity in ways that facilitate bacterial persistence in the host and induce periodontal inflammation. In addition, surface glycans may help certain periodontal bacteria protect against serum complement attack or help them escape immune detection through glycomimicry. In this review we will focus mainly on the generalized surface-layer protein glycosylation system of the periodontal pathogen Tannerella forsythia in shaping innate and adaptive host immunity in the context of periodontal disease. In addition, we will also review the current state of knowledge of surface protein glycosylation and its potential for immune modulation in other periodontal pathogens.
    Frontiers in Microbiology 10/2013; 4:310. DOI:10.3389/fmicb.2013.00310 · 3.99 Impact Factor