Neural correlates (ERP/fMRI) of voluntary selection in adult ADHD patients.

Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Nussbaumstrasse 7, 80336, Munich, Germany.
European Archives of Psychiatry and Clinical Neuroscience (Impact Factor: 3.36). 11/2009; 260(5):427-40. DOI: 10.1007/s00406-009-0089-y
Source: PubMed

ABSTRACT Deficits in executive functions, e.g. voluntary selection, are considered central to the attention-deficit/hyperactivity disorder (ADHD). The aim of this simultaneous EEG/fMRI study was to examine associated neural correlates in ADHD patients. Patients with ADHD and healthy subjects performed an adapted go/nogo task including a voluntary selection condition allowing participants to freely decide, whether to press the response button. Electrophysiologically, response inhibition and voluntary selection led to fronto-central responses. The fMRI data revealed increased medial/lateral frontal and parietal activity during the voluntary selection task. Frontal brain responses were reduced in ADHD patients compared to controls during free responses, whereas parietal brain functions seemed to be unaffected. These results may indicate that selection processes are related to dysfunctions, predominantly in frontal brain regions in ADHD patients.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Due to its millisecond-scale temporal resolution, EEG allows to assess neural correlates with precisely defined temporal relationship relative to a given event. This knowledge is generally lacking in data from functional magnetic resonance imaging (fMRI) which has a temporal resolution on the scale of seconds so that possibilities to combine the two modalities are sought. Previous applications combining event-related potentials (ERPs) with simultaneous fMRI BOLD generally aimed at measuring known ERP components in single trials and correlate the resulting time series with the fMRI BOLD signal. While it is a valuable first step, this procedure cannot guarantee that variability of the chosen ERP component is specific for the targeted neurophysiological process on the group and single subject level. Here we introduce a newly developed data-driven analysis procedure that automatically selects task-specific electrophysiological independent components (ICs). We used single-trial simultaneous EEG/fMRI analysis of a visual Go/Nogo task to assess inhibition-related EEG components, their trial-to-trial amplitude variability, and the relationship between this variability and the fMRI. Single-trial EEG/fMRI analysis within a subgroup of 22 participants revealed positive correlations of fMRI BOLD signal with EEG-derived regressors in fronto-striatal regions which were more pronounced in an early compared to a late phase of task execution. In sum, selecting Nogo-related ICs in an automated, single subject procedure reveals fMRI-BOLD responses correlated to different phases of task execution. Furthermore, to illustrate utility and generalizability of the method beyond detecting the presence or absence of reliable inhibitory components in the EEG, we show that the IC selection can be extended to other events in the same dataset, e.g., the visual responses.
    Frontiers in Neuroscience 07/2014; 8:175. DOI:10.3389/fnins.2014.00175
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies of adults with attention-deficit/hyperactivity disorder (ADHD) have suggested that they have deficient response inhibition, but findings concerning the neural correlates of inhibition in this patient population are inconsistent. We used the Stop-Signal task and functional magnetic resonance imaging (fMRI) to compare neural activation associated with response inhibition between adults with ADHD (N=35) and healthy comparison subjects (N=62), and in follow-up tests to examine the effect of current medication use and symptom severity. There were no differences in Stop-Signal task performance or neural activation between ADHD and control participants. Among the ADHD participants, however, significant differences were associated with current medication, with individuals taking psychostimulants (N=25) showing less stopping-related activation than those not currently receiving psychostimulant medication (N=10). Follow-up analyses suggested that this difference in activation was independent of symptom severity. These results provide evidence that deficits in inhibition-related neural activation persist in a subset of adult ADHD individuals, namely those individuals currently taking psychostimulants. These findings help to explain some of the disparities in the literature, and advance our understanding of why deficits in response inhibition are more variable in adult, as compared with child and adolescent, ADHD patients.
    Psychiatry Research Neuroimaging 04/2014; DOI:10.1016/j.pscychresns.2014.02.002 · 2.83 Impact Factor
  • Source