Optimizing conical intersections by spin-flip density functional theory: application to ethylene.

Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
The Journal of Physical Chemistry A (Impact Factor: 2.77). 11/2009; 113(46):12749-53. DOI: 10.1021/jp908032x
Source: PubMed

ABSTRACT Conical intersections (CIs) of ethylene have been successfully determined using spin-flip density functional theory (SFDFT) combined with a penalty-constrained optimization method. We present in detail three structures, twisted-pyramidalized, hydrogen-migrated, and ethylidene CIs. In contrast to the linear response time-dependent density functional theory, which predicts a purely twisted geometry without pyramidalization as the S(1) global minimum, SFDFT gives a pyramidalized structure. Therefore, this is the first correct optimization of CI points of twisted ethylene by the DFT method. The calculated energies and geometries are in good agreement with those obtained by the multireference configuration interaction (MR-CI) method and the multistate formulation of second-order multireference perturbation theory (MS-CASPT2).

  • [Show abstract] [Hide abstract]
    ABSTRACT: This extensive theoretical study employed the spin-flip density functional theory (SFDFT) method to investigate the photoisomerization of 11-cis-retinal protonated Schiff base (PSB11) and its minimal model tZt-penta-3,5-dieniminium cation (PSB3). Our calculated results indicate that SFDFT can perform very well in describing the ground- and excited-state geometries of PSB3 and PSB11. We located the conical intersection (CI) point and constructed the photoisomerization reaction path of PSB3 and PSB11 by using the SFDFT method. To further verify the SFDFT results, we computed the energy profiles along the constructed linearly interpolated internal coordinate (LIIC) pathways by using high-level theoretical methods, such as the EOM-CCSD, CR-EOM-CCSD(T), CASPT2, NEVPT2, and XMCQDPT2 methods. The SFDFT method predicts that the photoisomerization of PSB3 is barrierless, in accordance with previous complete-active-space self-consistent-field (CASSCF) results. However, an energy barrier is predicted along the LIIC pathways of PSB11. This finding is different from previous CASSCF results and may indicate that the photoisomerization of PSB11 in gas phase is similar to that in solution. However, the higher spin contamination of the SFDFT method in the vicinity of the CI point caused the located CI geometry to deviate from that of the real CI. In addition, the LIIC pathways are only approximations to the minimum energy path (MEP). Thus, further experimental and theoretical studies are needed to verify the existence of an energy barrier along the photoisomerization reaction path of PSB11 in gas phase. © 2013 Wiley Periodicals, Inc.
    Journal of Computational Chemistry 11/2013; · 3.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of extended seams of conical intersection in excited-state mechanisms is reviewed. Seams are crossings of the potential energy surface in many dimensions where the decay from the excited to the ground state can occur, and the extended seam is composed of different segments lying along a reaction coordinate. Every segment is associated with a different primary photoproduct, which gives rise to competing pathways. This idea is first illustrated for fulvene and ethylene, and then it is used to explain more complex cases such as the dependence of the isomerisation of retinal chromophore isomers on the protein environment, the dependence of the efficiency of the azobenzene photochemical switch on the wavelength of irradiation and the direction of the isomerisation, and the coexistence of different mechanisms in the photo-induced Wolff rearrangement of diazonaphthoquinone. The role of extended seams in the photophysics of the DNA nucleobases and the relationship between two-state seams and three-state crossings is also discussed. As an outlook, the design of optical control strategies based on the passage of the excited molecule through the seam is considered, and it is shown how the excited-state lifetime of fulvene can be modulated by shaping the energy of the seam.
    ChemPhysChem 08/2014; · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H3 near its D3h geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state.
    The Journal of chemical physics. 08/2014; 141(6):064104.