Performance evaluation of a 32-element head array with respect to the ultimate intrinsic SNR

Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, NY 10016, USA.
NMR in Biomedicine (Impact Factor: 3.04). 01/2009; 23(2):142-51. DOI: 10.1002/nbm.1435
Source: PubMed


The quality of an RF detector coil design is commonly judged on how it compares with other coil configurations. The aim of this article is to develop a tool for evaluating the absolute performance of RF coil arrays. An algorithm to calculate the ultimate intrinsic signal-to-noise ratio (SNR) was implemented for a spherical geometry. The same imaging tasks modeled in the calculations were reproduced experimentally using a 32-element head array. Coil performance maps were then generated based on the ratio of experimentally measured SNR to the ultimate intrinsic SNR, for different acceleration factors associated with different degrees of parallel imaging. The relative performance in all cases was highest near the center of the samples (where the absolute SNR was lowest). The highest performance was found in the unaccelerated case and a maximum of 85% was observed with a phantom whose electrical properties are consistent with values in the human brain. The performance remained almost constant for 2-fold acceleration, but deteriorated at higher acceleration factors, suggesting that larger arrays are needed for effective highly-accelerated parallel imaging. The method proposed here can serve as a tool for the evaluation of coil designs, as well as a tool to guide the development of original designs which may begin to approach the optimal performance.

Download full-text


Available from: Riccardo Lattanzi,
  • [Show abstract] [Hide abstract]
    ABSTRACT: To increase the sensitivity of 3-dimensional fluid-attenuated inversion recovery (3D-FLAIR) to low concentration gadolinium (Gd)-based contrast medium, we optimized sequence parameters on a phantom and evaluated the optimized sequence in patients suspicious for endolymphatic hydrops. All scans were performed on a 3-tesla magnetic resonance (MR) unit using a 32-channel head coil. We optimized sequence parameters using a phantom filled with diluted Gd and compared the optimized protocol with 3D-FLAIR using conventional turbo spin echo sequence (3D-FLAIR-CONV). Nine patients underwent scanning using the newly optimized sequence and 3D-FLAIR-CONV 4 hours after double-dose administration of intravenous Gd. We subjectively scored separation of endo- and perilymph space and measured contrast-to-noise ratio (CNR) between endo- and perilymph. The optimized sequence in the phantom study consisted of: repetition time, 9000 ms; echo time, 540 ms; inversion time, 2400 ms; low constant readout flip angle, 120 degrees in the later part of the echo train. Image contrast became heavily T(2)-weighted (hT(2)W-3D-FLAIR). In patients, we recognized endolymphatic space for both the cochlea and vestibule significantly better by hT(2)W-3D-FLAIR than 3D-FLAIR-CONV (P<0.01). The mean CNR of the new method was also better than that of 3D-FLAIR-CONV (P<0.01). The newly optimized hT(2)W-3D-FLAIR was more sensitive than the previous method to low concentration of Gd. Visualization of the endolymphatic space by double-dose administration of intravenous Gd would be more reliable using hT(2)W-3D-FLAIR.
    Magnetic Resonance in Medical Sciences 01/2010; 9(2):73-80. DOI:10.2463/mrms.9.73 · 1.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fetal MRI on 1.5T clinical scanner has been increasingly becoming a powerful imaging tool for studying fetal brain abnormalities in vivo. Due to limited availability of dedicated fetal phased arrays, commercial torso or cardiac phased arrays are routinely used for fetal scans, which are unable to provide optimized SNR and parallel imaging performance with a small number coil elements, and insufficient coverage and filling factor. This poses a demand for the investigation and development of dedicated and efficient radiofrequency (RF) hardware to improve fetal imaging. In this work, an investigational approach to simulate the performance of multichannel flexible phased arrays is proposed to find a better solution to fetal MR imaging. A 32 channel fetal array is presented to increase coil sensitivity, coverage and parallel imaging performance. The electromagnetic field distribution of each element of the fetal array is numerically simulated by using finite-difference time-domain (FDTD) method. The array performance, including B(1) coverage, parallel reconstructed images and artifact power, is then theoretically calculated and compared with the torso array. Study results show that the proposed array is capable of increasing B(1) field strength as well as sensitivity homogeneity in the entire area of uterus. This would ensure high quality imaging regardless of the location of the fetus in the uterus. In addition, the paralleling imaging performance of the proposed fetal array is validated by using artifact power comparison with torso array. These results demonstrate the feasibility of the 32 channel flexible array for fetal MR imaging at 1.5T.
    01/2011; 1(1):24-30. DOI:10.3978/j.issn.2223-4292.2011.11.04
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ultimate intrinsic signal-to-noise ratio is the highest possible signal-to-noise ratio, and the ultimate intrinsic specific absorption rate provides the lowest limit of the specific absorption rate for a given flip angle distribution. Analytic expressions for ultimate intrinsic signal-to-noise ratio and ultimate intrinsic specific absorption rate are obtained for arbitrary sample geometries. These expressions are valid when the distance between the point of interest and the sample surface is smaller than the wavelength, and the sample is homogeneous. The dependence on the sample permittivity, conductivity, temperature, size, and the static magnetic field strength is given in analytic form, which enables the easy evaluation of the change in signal-to-noise ratio and specific absorption rate when the sample is scaled in size or when any of its geometrical or electrical parameters is altered. Furthermore, it is shown that signal-to-noise ratio and specific absorption rate are independent of the permeability of the sample. As a practical case and a solution example, a uniform, circular cylindrically shaped sample is studied.
    Magnetic Resonance in Medicine 09/2011; 66(3):846-58. DOI:10.1002/mrm.22830 · 3.57 Impact Factor
Show more