Article

Large T antigen promotes JC virus replication in G2-arrested cells by inducing ATM- and ATR-mediated G2 checkpoint signaling.

Department of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.
Journal of Biological Chemistry (Impact Factor: 4.6). 11/2009; 285(2):1544-54. DOI: 10.1074/jbc.M109.064311
Source: PubMed

ABSTRACT Large T antigen (TAg) of the human polyomavirus JC virus (JCV) possesses DNA binding and helicase activities, which, together with various cellular proteins, are required for replication of the viral genome. We now show that JCV-infected cells expressing TAg accumulate in the G(2) phase of the cell cycle as a result of the activation of ATM- and ATR-mediated G(2) checkpoint pathways. Transient transfection of cells with a TAg expression vector also induced G(2) checkpoint signaling and G(2) arrest. Analysis of TAg mutants with different subnuclear localizations suggested that the association of TAg with cellular DNA contributes to the induction of G(2) arrest. Abrogation of G(2) arrest by inhibition of ATM and ATR, Chk1, and Wee1 suppressed JCV genome replication. In addition, abrogation of the G(2)-M transition by Cdc2 depletion disabled Wee1 depletion-induced suppression of JCV genome replication, suggesting that JCV replication is facilitated by G(2) arrest resulting from G(2) checkpoint signaling. Moreover, inhibition of ATM and ATR by caffeine suppressed JCV production. The observation that oligodendrocytes productively infected with JCV in vivo also undergo G(2) arrest suggests that G(2) checkpoint inhibitors such as caffeine are potential therapeutic agents for JCV infection.

0 Followers
 · 
67 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease triggered by infection with the human gliotropic JC virus (JCV). Due to the human-selective nature of the virus, there are no animal models available to investigate JCV pathogenesis. To address this issue, we developed mice with humanized white matter by engrafting human glial progenitor cells (GPCs) into neonatal immunodeficient and myelin-deficient mice. Intracerebral delivery of JCV resulted in infection and subsequent demyelination of these chimeric mice. Human GPCs and astrocytes were infected more readily than oligodendrocytes, and viral replication was noted primarily in human astrocytes and GPCs rather than oligodendrocytes, which instead expressed early viral T antigens and exhibited apoptotic death. Engraftment of human GPCs in normally myelinated and immunodeficient mice resulted in humanized white matter that was chimeric for human astrocytes and GPCs. JCV effectively propagated in these mice, which indicates that astroglial infection is sufficient for JCV spread. Sequencing revealed progressive mutation of the JCV capsid protein VP1 after infection, suggesting that PML may evolve with active infection. These results indicate that the principal CNS targets for JCV infection are astrocytes and GPCs and that infection is associated with progressive mutation, while demyelination is a secondary occurrence, following T antigen-triggered oligodendroglial apoptosis. More broadly, this study provides a model by which to further assess the biology and treatment of human-specific gliotropic viruses.
    Journal of Clinical Investigation 11/2014; 124(12). DOI:10.1172/JCI76629 · 13.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PKcs kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PKcs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5' to 3' end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication.
    PLoS Pathogens 12/2014; 10(12):e1004536. DOI:10.1371/journal.ppat.1004536 · 8.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication.
    Virology 11/2014; s 468–470:113–125. DOI:10.1016/j.virol.2014.07.042 · 3.28 Impact Factor