Article

Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome.

Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
Neurogastroenterology and Motility (Impact Factor: 2.94). 11/2009; 22(5):512-9, e114-5. DOI: 10.1111/j.1365-2982.2009.01427.x
Source: PubMed

ABSTRACT The profile of intestinal organic acids in irritable bowel syndrome (IBS) and its correlation with gastrointestinal (GI) symptoms are not clear. We hypothesized in this study that altered GI microbiota contribute to IBS symptoms through increased levels of organic acids.
Subjects were 26 IBS patients and 26 age- and sex-matched controls. Fecal samples were collected for microbiota analysis using quantitative real-time polymerase chain reaction and culture methods, and the determination of organic acid levels using high-performance liquid chromatography. Abdominal gas was quantified by image analyses of abdominal X-ray films. Subjects completed a questionnaire for GI symptoms, quality of life (QOL) and negative emotion.
Irritable bowel syndrome patients showed significantly higher counts of Veillonella (P = 0.046) and Lactobacillus (P = 0.031) than controls. They also expressed significantly higher levels of acetic acid (P = 0.049), propionic acid (P = 0.025) and total organic acids (P = 0.014) than controls. The quantity of bowel gas was not significantly different between controls and IBS patients. Finally, IBS patients with high acetic acid or propionic acid levels presented with significantly worse GI symptoms, QOL and negative emotions than those with low acetic acid or propionic acid levels or controls.
These results support the hypothesis that both fecal microbiota and organic acids are altered in IBS patients. A combination of Veillonella and Lactobacillus is known to produce acetic and propionic acid. High levels of acetic and propionic acid may associate with abdominal symptoms, impaired QOL and negative emotions in IBS.

1 Bookmark
 · 
103 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Visceral pain is a global term used to describe pain originating from the internal organs, which is distinct from somatic pain. It is a hallmark of functional gastrointestinal disorders such as irritable-bowel syndrome (IBS). Currently, the treatment strategies targeting visceral pain are unsatisfactory, with development of novel therapeutics hindered by a lack of detailed knowledge of the underlying mechanisms. Stress has long been implicated in the pathophysiology of visceral pain in both preclinical and clinical studies. Here, we discuss the complex etiology of visceral pain reviewing our current understanding in the context of the role of stress, gender, gut microbiota alterations, and immune functioning. Furthermore, we review the role of glutamate, GABA, and epigenetic mechanisms as possible therapeutic strategies for the treatment of visceral pain for which there is an unmet medical need. Moreover, we discuss the most widely described rodent models used to model visceral pain in the preclinical setting. The theory behind, and application of, animal models is key for both the understanding of underlying mechanisms and design of future therapeutic interventions. Taken together, it is apparent that stress-induced visceral pain and its psychiatric comorbidities, as typified by IBS, has a multifaceted etiology. Moreover, treatment strategies still lag far behind when compared to other pain modalities. The development of novel, effective, and specific therapeutics for the treatment of visceral pain has never been more pertinent.
    Frontiers in Psychiatry 02/2015; 6. DOI:10.3389/fpsyt.2015.00015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pool of microbes inhabiting our body is known as "microbiota" and their collective genomes as "microbiome". The colon is the most densely populated organ in the human body, although other parts, such as the skin, vaginal mucosa, or respiratory tract, also harbour specific microbiota. This microbial community regulates some important metabolic and physiological functions of the host, and drives the maturation of the immune system in early life, contributing to its homeostasis during life. Alterations of the intestinal microbiota can occur by changes in composition (dysbiosis), function, or microbiota-host interactions and they can be directly correlated with several diseases. The only disease in which a clear causal role of a dysbiotic microbiota has been demonstrated is the case of Clostridium difficile infections. Nonetheless, alterations in composition and function of the microbiota have been associated with several gastrointestinal diseases (inflammatory bowel disease, colorectal cancer, or irritable bowel syndrome), as well as extra-intestinal pathologies, such as those affecting the liver, or the respiratory tract (e.g., allergy, bronchial asthma, and cystic fibrosis), among others. Species of Bifidobacterium genus are the normal inhabitants of a healthy human gut and alterations in number and composition of their populations is one of the most frequent features present in these diseases. The use of probiotics, including bifidobacteria strains, in preventive medicine to maintain a healthy intestinal function is well documented. Probiotics are also proposed as therapeutic agents for gastrointestinal disorders and other pathologies. The World Gastroenterology Organization recently published potential clinical applications for several probiotic formulations, in which species of lactobacilli are predominant. This review is focused on probiotic preparations containing Bifidobacterium strains, alone or in combination with other bacteria, which have been tested in human clinical studies. In spite of extensive literature on and research into this topic, the degree of scientific evidence of the effectiveness of probiotics is still insufficient in most cases. More effort need to be made to design and conduct accurate human studies demonstrating the efficacy of probiotics in the prevention, alleviation, or treatment of different pathologies.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Irritable bowel syndrome (IBS) is a heterogeneous functional disorder with a multifactorial etiology that involves the interplay of both host and environmental factors. Among environmental factors relevant for IBS etiology, the diet stands out given that the majority of IBS patients report their symptoms to be triggered by meals or specific foods. The diet provides substrates for microbial fermentation, and since the composition of the intestinal microbiota is disturbed in IBS patients, the link between diet, microbiota composition and microbial fermentation products might play an essential role in IBS etiology. In this review, we summarize current evidence regarding the impact of diet and the intestinal microbiota on IBS symptoms as well as the reported interactions between diet and the microbiota composition. Based on the existing data we suggest pathways (mechanisms) by which diet components, via the microbial fermentation could trigger IBS symptoms. Finally, this review provides recommendations for future studies that would enable elucidation of the role of diet and microbiota and how these factors may be (inter)related in the pathophysiology of IBS.
    The American Journal of Gastroenterology 01/2014; DOI:10.1038/ajg.2014.427 · 9.21 Impact Factor

Preview

Download
1 Download