Blood parasites in birds from Madagascar.

Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Box 110880, Gainesville, Florida 32611, USA.
Journal of wildlife diseases (Impact Factor: 1.31). 10/2009; 45(4):907-20. DOI: 10.7589/0090-3558-45.4.907
Source: PubMed

ABSTRACT Madagascar has long been recognized for its unique and diverse biota. In particular, significant effort has been made to establish baseline population data to better conserve the endemic avifauna. During field expeditions between 1993 and 2004, birds were mist-netted at 11 different sites, at elevations from 60 m to 2,050 m above sea level. Data on endemic status, forest type, and habitat preference were recorded. Thin blood films from 947 birds, belonging to 26 families and 64 species, were examined by light microscopy to determine the prevalence of blood parasites. Of these 947 birds, 30.7% were infected by at least one species of blood parasite, 26.8% of which were infected by more than one species. Species of Haemoproteus were the most prevalent (17.4%), followed by microfilariae (11.0%), Leucocytozoon spp. (9.4%), Plasmodium spp. (1.9%), Trypanosoma spp. (0.9%), and Babesia spp. (0.2%). Species level identifications confirmed the presence of 47 species of hemosporidians and trypanosomes, which is notably high and mirrors the diversity of their avian hosts. Eleven (23.4%) of these parasite species were new to science and thought to be endemic to the island. Significant differences in prevalence were observed by sample site, forest type (humid vs. dry), and habitat preference. Birds from all elevational zones sampled were infected, although not all parasite genera were present in each zone. Four of the six endemic avian families or subfamilies (Bernieridae, Brachypteraciidae, Philepittinae [Eurylaimidae], and Vangidae) were sampled and found to be parasitized. Of the families with the largest sample sizes, the Zosteropidae and Ploceidae had the highest prevalence of infection (65.6% and 49.3%, respectively). The vectors of hematozoan parasites in Madagascar are currently unknown. These results add to the current knowledge of avian parasitism in Madagascar and are of particular interest for the conservation of endemic species, as well as threatened or endangered populations.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The low prevalence of blood parasites in some bird species may be related to the habitats they frequent, the inexistence of the right host-parasite assemblage or the immunological capacity of the host. Here, we assess the parasite load of breeding populations of Eleonora's falcon (Falco eleonorae), a medium-sized long-distance migratory raptor that breeds on small isolated islets throughout the Mediterranean basin and winters in inland Madagascar. Methods: We examined the prevalence and genetic diversity of the blood parasite belonging to the genera Plasmodium, Haemoproteus and Leucocytozoon in Eleonora's falcon nestlings from five colonies and in adults from two colonies from nesting sites distributed throughout most of the species' breeding range. Results: None of the 282 nestlings analysed were infected by blood parasites; on the other hand, the lineages of Plasmodium, Haemoproteus and Leucocytozoon were all found to infect adults. Our results support the idea of no local transmission of vectorborne parasites in marine habitats. Adult Eleonora's falcons thus may be infected by parasites when on migration or in their wintering areas. Conclusion: The characteristics of marine environments with a lack of appropriate vectors may thus be the key factor determining the absence of local transmission of blood parasites. By comparing the parasite lineages isolated in this species with those previously found in other birds we were able to infer the most likely areas for the transmission of the various parasite lineages.
    Parasites & Vectors 03/2015; 8:189. DOI:10.1186/s13071-015-0802-9 · 3.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Haemoparasites in feral pigeons have been studied in several countries but no data are available from Italy. The aim of this work was to evaluate the prevalence and diversity of Haemoproteus spp./Plasmodium spp. and Leucocytozoon spp. in feral pigeons from northwest Italy, as well as the association between infection and host age or sex. Feral pigeons were collected during a regional culling programme from the Piedmont region (northwest Italy) and subjected to necropsy. Infections were detected from DNA extracted from the spleen following a nested PCR protocol. The association between sex or age and infection status was evaluated using the chi-squared test for independence or Fisher's exact test. Out of 51 animals, 15 were positive for Haemoproteus/Plasmodium spp. and eight for Leucocytozoon spp., with a significant difference between haemoparasites prevalence. There was no significant association between age or sex and infection status. The coinfection with different haemoparasites was very significant (p < 0.01), showing a greater relative risk to be infected by a second haemoparasite in birds already infected, in particular in male and in adult pigeons. DNA sequencing of Leucocytozoon spp. showed six different lineages in pigeons, and one of Haemoproteus and Plasmodium, respectively. Blood parasites are continuously circulating around the world, and the results presented in the paper suggest that cross infection of feral pigeons with haemoparasites typical of other migratory or nonmigratory bird species is possible. Moreover, the geographical location of Italy along the main migratory routes is a crucial factor to be considered for migratory birds, because they can be affected by blood parasites detected in feral pigeons, and vice versa.
    Malaria Journal 12/2015; 14(1):617. DOI:10.1186/s12936-015-0617-3 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Madagascar is one of the world's top twelve "megadiversity" hot spots hosting unique and threatened flora and fauna. Parasites are a major component of biodiversity but remain largely uncharacterized in wildlife. In this study we combine microscopic and molecular assessment of hemoparasites in endemic reptile species from Madagascar. We detected three distinct parasites: the apicomplexans Hepatozoon and Sarcocystis, and filarial nematodes. The prevalence and intensity of these apicomplexans were low overall, while microfilarial infections in chameleons were relatively high. We detected mixed infections of two Hepatozoon haplotypes in Madagascarophis colubrinus, and of Hepatozoon and microfilariae in a Furcifer sp. Phylogenetic analyses of Hepatozoon showed evidence of prey-predator transmission, with identical sequences found in the snakes M. colubrinus and Ithycyphus oursi, and their prey Furcifer sp. Based on previous studies regarding the life cycle of Hepatozoon domerguei Landau, Chabaud, Michel, and Brygoo, 1970 in these hosts and due to their morphological similarity, we propose that this Hepatozoon haplotype is Hepatozoon domerguei. Future studies, including the examination of invertebrate hosts, are needed to verify this preliminary taxonomic identification. A distinct hemogregarine haplotype was found in Oplurus sp., which displayed morphologically different gametocytes, some of which were apparently inside leukocytes. The Sarcocystis identified from Tracheloptychus petersi was identical to that reported in a North African snake, indicating that the same lineage is found in geographically distinct regions. By combining morphological and genetic information, Foleyella furcata (Linstow, 1899) filarial nematodes were identified in several Furcifer chameleons. This study provides insights into the distribution, diversity and host-parasite interactions of hemoparasites in wild reptile populations from Madagascar.
    Parasite 09/2014; 21:47. DOI:10.1051/parasite/2014046 · 0.82 Impact Factor


Available from
May 22, 2014