Article

Impact of Y143 HIV-1 integrase mutations on resistance to raltegravir in vitro and in vivo.

LBPA, CNRS UMR8113, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France.
Antimicrobial Agents and Chemotherapy (Impact Factor: 4.45). 11/2009; 54(1):491-501. DOI: 10.1128/AAC.01075-09
Source: PubMed

ABSTRACT Integrase (IN), the HIV-1 enzyme responsible for the integration of the viral genome into the chromosomes of infected cells, is the target of the recently approved antiviral raltegravir (RAL). Despite this drug's activity against viruses resistant to other antiretrovirals, failures of raltegravir therapy were observed, in association with the emergence of resistance due to mutations in the integrase coding region. Two pathways involving primary mutations on residues N155 and Q148 have been characterized. It was suggested that mutations at residue Y143 might constitute a third primary pathway for resistance. The aims of this study were to investigate the susceptibility of HIV-1 Y143R/C mutants to raltegravir and to determine the effects of these mutations on the IN-mediated reactions. Our observations demonstrate that Y143R/C mutants are strongly impaired for both of these activities in vitro. However, Y143R/C activity can be kinetically restored, thereby reproducing the effect of the secondary G140S mutation that rescues the defect associated with the Q148R/H mutants. A molecular modeling study confirmed that Y143R/C mutations play a role similar to that determined for Q148R/H mutations. In the viral replicative context, this defect leads to a partial block of integration responsible for a weak replicative capacity. Nevertheless, the Y143 mutant presented a high level of resistance to raltegravir. Furthermore, the 50% effective concentration (EC(50)) determined for Y143R/C mutants was significantly higher than that obtained with G140S/Q148R mutants. Altogether our results not only show that the mutation at position Y143 is one of the mechanisms conferring resistance to RAL but also explain the delayed emergence of this mutation.

Download full-text

Full-text

Available from: Frédéric Subra, Jun 20, 2015
0 Followers
 · 
112 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Raltegravir is an integrase inhibitor (INI) licensed for clinical use and other INI are in advanced stage of development. Different resistance mutations in HIV integrase from patients using these antiretroviral drugs have been described and G148H/R/K, N155H and less frequently Y143C/H/R are considered major resistant mutations to raltegravir. Both Stanford Database and Geno2Pheno list F121Y as conferring intermediate resistance "in vitro" both to raltegravir and elvitegravir. We report for the first time the "in vivo" selection F121Y and evolution to Y143R in a 31years old male clade B HIV-1 infected patient failing a raltegravir-containing salvage regimen. Plasma samples nine months prior to raltegravir (RAL-Naïve) and at weeks 32, 40 and 88 after RAL-containing regimen were analyzed. Antiretroviral susceptibility was evaluated at Stanford and Geno2Pheno from sequences obtained with RT-PCR. After a Viral load at week 12 below 50 copies/mL, viremia raised at week 20 to 4.5log10. The emergence of F121Y was observed at week 32 and 40, alongside with L74I, T97A, Q137H and V151I. At week 88 F121Y was no longer detected, L74I and T97A were maintained and Y143R emerged. F121Y might be an alternative pathway to Y143R. Changing of RAL-containing regimen upon the identification of F121Y might avoid the evolution of raltegravir resistance.
    Antiviral research 05/2012; 95(1):9-11. DOI:10.1016/j.antiviral.2012.04.007 · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drug resistance represents a key aspect of HIV treatment failure. It is important to develop non-human primate models to study issues of drug resistance as well as the persistence and transmission of drug-resistant viruses. However, relatively little work has been conducted using either simian immunodeficiency virus (SIV) or SIV/HIV recombinant viruses to study resistance against integrase strand transfer inhibitors (INSTIs). Here, we used a T-cell tropic SIV/HIV recombinant virus in which the capsid and vif regions of HIV-1were replaced with their SIV counterparts (stHIV-1SCA, SVIF) to study the impact of a number of drug resistance substitutions in the integrase coding region at positions E92Q, G118R, E138K, Y143R, S153Y, N155H and R263K on drug resistance, viral infectivity and viral replication capacity. Our results show that each of these substitutions exerted effects that were similar to their presence in HIV-1. Substitutions associated with primary resistance against dolutegravir were more detrimental to stHIV-1(SCA,SVIF) infectiousness than were resistance substitutions associated with raltegravir and elvitegravir, consistent with data that have been reported for HIV-1. These findings support the use of stHIV-1(SCA,SVIF) as a useful model with which to evaluate the role of INSTI-resistance substitutions on viral persistence, transmissibility and pathogenesis in a non-human primate model. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
    Antimicrobial Agents and Chemotherapy 01/2015; 59(4). DOI:10.1128/AAC.04829-14 · 4.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Strand transfer inhibitors (raltegravir, elvitegravir and dolutegravir) are now commonly used to inhibit HIV-1 integration. To date, three main pathways conferring raltegravir/elvitegravir resistance, involving residues Y143, Q148 and N155, have been described. However, no pathway has been clearly described for dolutegravir resistance. The aim of this study was to characterize the susceptibility of two mutations, F121Y and G118R, originally described in patients failing raltegravir-containing regimens, to dolutegravir and raltegravir, and then to compare the resistance of these mutations with that of other well-known mutations involved in raltegravir resistance. Both the F121Y and G118R mutations were introduced by site-directed mutagenesis into the pNL4.3 backbone and studied in cell-based and in vitro assays. The effects of the mutations were characterized at the different steps of infection by quantitative PCR. Results obtained with in vitro and ex vivo assays consistently showed that both mutations impaired the catalytic properties of integrase, especially at the integration step. Moreover, both mutations conferred an intermediate level of resistance to dolutegravir. Interestingly, the F121Y mutation, but not the G118R mutation, displayed differential resistance to raltegravir and dolutegravir. Indeed, the F121Y mutation was more resistant to raltegravir than to dolutegravir. Mutations at G118 and F121, which have been described in patients failing raltegravir-containing regimens, must be included in drug-resistance-testing algorithms. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
    Journal of Antimicrobial Chemotherapy 11/2014; 70(3). DOI:10.1093/jac/dku474 · 5.44 Impact Factor