Article

The effects of extracellular adenosine 5′-triphosphate on the tobacco proteome

Creative Gene Technology Ltd., The Integrative Cell Biology Laboratory, Durham, UK.
Proteomics (Impact Factor: 3.97). 01/2010; 10(2):235-44. DOI: 10.1002/pmic.200900454
Source: PubMed

ABSTRACT Extracellular adenosine 5'-triphosphate (eATP) is emerging as an important plant signalling compound capable of mobilising intracellular second messengers such as Ca(2+), nitric oxide, and reactive oxygen species. However, the downstream molecular targets and the spectrum of physiological processes that eATP regulates are largely unknown. We used exogenous ATP and a non-hydrolysable analogue as probes to identify the molecular and physiological effects of eATP-mediated signalling in tobacco. 2-DE coupled with MS/MS analysis revealed differential protein expression in response to perturbation of eATP signalling. These proteins are in several functional classes that included photosynthesis, mitochondrial ATP synthesis, and defence against oxidative stress, but the biggest response was in the pathogen defence-related proteins. Consistent with this, impairment of eATP signalling induced resistance against the bacterial pathogen Erwinia carotovora subsp. carotovora. In addition, disease resistance activated by a fungal pathogen elicitor (xylanase from Trichoderma viride) was concomitant with eATP depletion. These results reveal several previously unknown putative molecular targets of eATP signalling, which pinpoint eATP as an important hub at which regulatory signals of some major primary metabolic pathways and defence responses are integrated.

Full-text

Available from: Stephen Chivasa, Jun 11, 2015
0 Followers
 · 
196 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: ATP, the universal energy currency of all organisms, is released into the extracellular matrix and serves as a signal among cells, where it is referred to as an extracellular ATP. Although a signalling role for extracellular ATP has been well studied in mammals over the last 40 years, investigations of such a role in plants are at an early stage. Recently, the first plant receptor for extracellular ATP, DOes not Respond to Nucleotides (DORN1), was identified in Arabidopsis thaliana by mutant screening. DORN1 encodes a legume-type lectin receptor kinase that is structurally distinct from the mammalian extracellular ATP receptors. In the present review, we highlight the genetic and biochemical evidence for the role of DORN1 in extracellular ATP signalling, placing this within the wider context of extracellular ATP signalling during plant stress responses.
    Biochemical Journal 10/2014; 463(3):429-437. DOI:10.1042/BJ20140666 · 4.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies on extracellular proteins (ECPs) contribute to understanding of the multifunctional nature of apoplast. Unlike vascular plants (tracheophytes), little information about ECPs is available from non-vascular plants, such as mosses (bryophytes). In this study, moss plants (Physcomitrella patens) were grown in liquid culture and treated with chitosan, a water-soluble form of chitin that occurs in cell walls of fungi and insects and elicits pathogen defence in plants. ECPs released to the culture medium were compared between chitosan-treated and non-treated control cultures using quantitative mass spectrometry (Orbitrap) and 2-DE-LC-MS/MS. Over 400 secreted proteins were detected, of which 70% were homologous to ECPs reported in tracheophyte secretomes. Bioinformatics analyses using SignalP and SecretomeP predicted classical signal peptides for secretion (37%) or leaderless secretion (27%) for most ECPs of P. patens, but secretion of the remaining proteins (36%) could not be predicted using bioinformatics. Cultures treated with chitosan contained 72 proteins not found in untreated controls, whereas 27 proteins found in controls were not detected in chitosan-treated cultures. Pathogen defence-related proteins dominated in the secretome of P. patens, as reported in tracheophytes. These results advance knowledge on protein secretomes of plants by providing a comprehensive account of ECPs of a bryophyte.
    Journal of Proteome Research 12/2013; 13(2). DOI:10.1021/pr400827a · 5.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Induced mechanisms are by definition imperceptible or less active in uninfected, unstressed, or untreated plants, but can be activated by pathogen infection, stress, or chemical treatment to inhibit the replication and movement of virus in the host. In contrast, defenses that are pre-existing or serve to limit virus propagation and spread in otherwise susceptible hosts are considered to be "basal" in nature. Both forms of resistance can be genetically determined. Most recessive resistance genes that control resistance to viruses appear not to depend upon inducible mechanisms but rather maintain basal resistance by producing nonfunctional variants of factors, specifically translation initiation factors, required by the virus for successful exploitation of the host cell protein synthetic machinery. In contrast, most dominant resistance genes condition the induction of broad-scale changes in plant biochemistry and physiology that are activated and regulated by various signal transduction pathways, particularly those regulated by salicylic acid, jasmonic acid, and ethylene. These induced changes include localized plant cell death (associated with the hypersensitive response, HR) and the upregulation of resistance against many types of pathogen throughout the plant (systemic acquired resistance, SAR). Unfortunately, it is still poorly understood how virus infection is inhibited and restricted during the HR and in plants exhibiting SAR. Resistance to viruses is not always genetically predetermined and can be highly adaptive in nature. This is exemplified by resistance based on RNA silencing, which appears to play roles in both induced and basal resistance to viruses. To counter inducible resistance mechanisms, viruses have acquired counter-defense factors to subvert RNA silencing. Some of these factors may affect signal transduction pathways controlled by salicylic acid and jasmonic acid. In this chapter, we review current knowledge of defensive signaling in resistance to viruses including the nature and roles of low molecular weight, proteinaceous, and small RNA components of defensive signaling. We discuss the differences and similarities of defenses and defensive signaling directed against viral versus nonviral pathogens, the potential role of RNA silencing as an effector in resistance and possible regulator of defensive signaling, crosstalk and overlap between antiviral systems, and interference with and manipulation of host defensive systems by the viruses themselves.
    Advances in Virus Research 01/2010; 76:57-121. DOI:10.1016/S0065-3527(10)76003-6 · 3.59 Impact Factor