The effects of extracellular adenosine 5'-triphosphate on the tobacco proteome.

Creative Gene Technology Ltd., The Integrative Cell Biology Laboratory, Durham, UK.
Proteomics (Impact Factor: 4.43). 11/2009; 10(2):235-44. DOI: 10.1002/pmic.200900454
Source: PubMed

ABSTRACT Extracellular adenosine 5'-triphosphate (eATP) is emerging as an important plant signalling compound capable of mobilising intracellular second messengers such as Ca(2+), nitric oxide, and reactive oxygen species. However, the downstream molecular targets and the spectrum of physiological processes that eATP regulates are largely unknown. We used exogenous ATP and a non-hydrolysable analogue as probes to identify the molecular and physiological effects of eATP-mediated signalling in tobacco. 2-DE coupled with MS/MS analysis revealed differential protein expression in response to perturbation of eATP signalling. These proteins are in several functional classes that included photosynthesis, mitochondrial ATP synthesis, and defence against oxidative stress, but the biggest response was in the pathogen defence-related proteins. Consistent with this, impairment of eATP signalling induced resistance against the bacterial pathogen Erwinia carotovora subsp. carotovora. In addition, disease resistance activated by a fungal pathogen elicitor (xylanase from Trichoderma viride) was concomitant with eATP depletion. These results reveal several previously unknown putative molecular targets of eATP signalling, which pinpoint eATP as an important hub at which regulatory signals of some major primary metabolic pathways and defence responses are integrated.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, adenosine tri-phosphate (ATP) has been reported to exist in apoplasts of plant cells as a signal molecule. Extracellular ATP (eATP) plays important roles in plant growth, development, and stress tolerance. Here, extracellular ATP was found to promote stomatal opening of Arabidopsis thaliana in light and darkness. ADP, GTP, and weakly hydrolyzable ATP analogs (ATPγS, Bz-ATP, and 2meATP) showed similar effects, whereas AMP and adenosine did not affect stomatal movement. Apyrase inhibited stomatal opening. ATP-promoted stomatal opening was blocked by an NADPH oxidase inhibitor (diphenylene iodonium) or deoxidizer (dithiothreitol), and was impaired in null mutant of NADPH oxidase (atrbohD/F). Added ATP triggered ROS generation in guard cells via NADPH oxidase. ATP also induced Ca(2+) influx and H(+) efflux in guard cells. In atrbohD/F, ATP-induced ion flux was strongly suppressed. In null mutants of the heterotrimeric G protein α subunit, ATP-promoted stomatal opening, cytoplasmic ROS generation, Ca(2+) influx, and H(+) efflux were all suppressed. These results indicated that eATP-promoted stomatal opening possibly involves the heterotrimeric G protein, ROS, cytosolic Ca(2+), and plasma membrane H(+)-ATPase.
    Molecular Plant 12/2011; 5(4):852-64. · 6.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Complex signalling systems have evolved in multicellular organisms to enable cell-to-cell communication during growth and development. In plants, cell communication via the extracellular matrix (apoplast) controls many processes vital for plant survival. Secretion of ATP into the extracellular matrix is now recognised as a previously unknown stimulus for cell signalling with a role in many aspects of plant physiology. In the last decade, the secondary messenger molecules in extracellular ATP signalling were identified, but the downstream gene and protein networks that underpin plant responses to extracellular ATP are only beginning to be characterised. Here we review the current status of our knowledge of plant extracellular signalling and demonstrate how applying state-of-the art proteomic technologies is rapidly bringing new discoveries in extracellular ATP research. We discuss how monitoring of the global proteomic profile during responses to modulation of extracellular ATP signalling has led to novel insight into pathogen defence systems and plant programmed cell death regulation. On the basis of extensive proteomic, pharmacological, and reverse genetics data, extracellular ATP has been confirmed to constitute an important molecular switch that tightly controls organellar energy metabolism, reprogramming of primary metabolic pathways, and redirection of resources to protein networks that support adaptation of plants to stress.
    Molecular BioSystems 02/2012; 8(2):445-52. · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Light plays an important role in plant growth, development, and response to environmental stresses. To investigate the effects of light on the plant responses to cadmium (Cd) stress, we performed a comparative physiological and proteomic analysis of light- and dark-grown Arabidopsis cells after exposure to Cd. Treatment with different concentrations of Cd resulted in stress-related phenotypes such as cell growth inhibition and decline of cell viability. Notably, light-grown cells were more sensitive to heavy metal toxicity than dark-grown cells, and the basis for this appears to be the elevated Cd accumulation, which is twice as much under light than dark growth conditions. Protein profiles analyzed by 2D DIGE revealed a total of 162 protein spots significantly changing in abundance in response to Cd under at least one of these two growing conditions. One hundred and ten of these differentially expressed protein spots were positively identified by MS/MS and they are involved in multiple cellular responses and metabolic pathways. Sulfur metabolism-related proteins increased in relative abundance both in light- and dark-grown cells after exposure to Cd. Proteins involved in carbohydrate metabolism, redox homeostasis, and anti-oxidative processes were decreased both in light- and dark-grown cells, with the decrease being lower in the latter case. Remarkably, proteins associated with cell wall biosynthesis, protein folding, and degradation showed a light-dependent response to Cd stress, with the expression level increased in darkness but suppressed in light. The possible biological importance of these changes is discussed.
    Proteomics 02/2013; · 4.43 Impact Factor


Available from
May 20, 2014