ADP-ribosylation of human defensin HNP-1 results in the replacement of the modified arginine with the noncoded amino acid ornithine.

Translational Medicine Branch and Laboratory of Biochemistry, National Heart, Lung and Blood Institute, Medical Genetics Branch, National Institutes of Health, Bethesda, MD 20892, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2009; 106(47):19796-800. DOI: 10.1073/pnas.0910633106
Source: PubMed

ABSTRACT Defensins (e.g., human neutrophil peptides, or HNPs) contribute to innate immunity through diverse actions, including microbial killing; high concentrations are present in the lung in response to inflammation. Arginines are critical for HNP activity, which is decreased by their replacement with ornithine. ADP-ribosyltransferases (ARTs) catalyze transfer of ADP-ribose from NAD to an acceptor arginine in a protein substrate, whereas ADP-ribosylarginine hydrolases release ADP-ribose. ART1 on the surface of airway epithelial cells ADP-ribosylated HNP-1 specifically on arginines 14 and 24, with ADP-ribosylation altering biological activity. Di- and mono-ADP-ribosylated HNP-1 were isolated from bronchoalveolar lavage fluid (BALF) of patients with asthma and idiopathic pulmonary fibrosis (IPF), suggesting a role for ADP-ribosylation in disease. In the present study, we observed that ART1-catalyzed ADP-ribosylation of HNP-1 in vitro generated a product with ADP-ribose on arginine 24, and ornithine replacing arginine at position 14. We hypothesized that ADP-ribosylarginine is susceptible to a nonenzymatic hydrolytic reaction yielding ornithine. On incubation of di- or mono-ADP-ribosyl-HNP-1 at 37 degrees C, ADP-ribosylarginine was partially replaced by ornithine, whereas ornithine was not detected by amino acid analysis and mass spectrometry of unmodified HNP-1 incubated under the same conditions. Further, ornithine was produced from the model compound, ADP-ribosylarginine. BALF from an IPF patient contained ADP-ribosyl-HNP-ornithine as well as mono- and di-ADP-ribosylated HNP-1, consistent with in vivo conversion of arginine to ornithine. Targeted ADP-ribosylation of specific arginines by transferases, resulting in their replacement with ornithine, is an alternative pathway for regulation of protein function through posttranslational modification.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Trypsin-fold proteases, the largest mammalian protease family, are classified by their primary substrate specificity into one of three categories, trypsin-like, chymotrypsin-like, and elastase-like, based on key structural features of their active site. However, the recently discovered neutrophil serine protease 4 (NSP4, also known as PRSS57) presents a paradox: NSP4 exhibits a trypsin-like specificity for cleaving substrates after arginine residues, but it bears elastase-like specificity determining residues in the active site. Here we show that NSP4 has a fully occluded S1 pocket and that the substrate P1-arginine adopts a noncanonical "up" conformation stabilized by a solvent-exposed H-bond network. This uncommon arrangement, conserved in all NSP4 orthologs, enables NSP4 to process substrates after both arginine as well as post-translationally modified arginine residues, such as methylarginine and citrulline. These findings establish a distinct paradigm for substrate recognition by a trypsin-fold protease and provide insights into the function of NSP4.
    Structure 08/2014; 22(9). DOI:10.1016/j.str.2014.07.008 · 6.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Cholix toxin is an ADP-ribosyltransferase found in non-O1/non-O139 strains of Vibrio cholera. The catalytic fragment of cholix toxin was characterized as a diphthamide dependent ADP-ribosyltransferase.ResultsOur studies on the enzymatic activity of cholix toxin catalytic fragment show that the transfer of ADP-ribose to toxin takes place by a predominantly intramolecular mechanism and results in the preferential alkylation of arginine residues proximal to the NAD+ binding pocket. Multiple arginine residues, located near the catalytic site and at distal sites, can be the ADP-ribose acceptor in the auto-reaction. Kinetic studies of a model enzyme, M8, showed that a diffusible intermediate preferentially reacted with arginine residues in proximity to the NAD+ binding pocket. ADP-ribosylarginine activity of cholix toxin catalytic fragment could also modify exogenous substrates. Auto-ADP-ribosylation of cholix toxin appears to have negatively regulatory effect on ADP-ribosylation of exogenous substrate. However, at the presence of both endogenous and exogenous substrates, ADP-ribosylation of exogenous substrates occurred more efficiently than that of endogenous substrates.Conclusions We discovered an ADP-ribosylargininyl activity of cholix toxin catalytic fragment from our studies in auto-ADP-ribosylation, which is mediated through diffusible intermediates. The lifetime of the hypothetical intermediate exceeds recorded and predicted lifetimes for the cognate oxocarbenium ion. Therefore, a diffusible strained form of NAD+ intermediate was proposed to react with arginine residues in a proximity dependent manner.
    BMC Biochemistry 12/2014; 15(1):26. DOI:10.1186/s12858-014-0026-1 · 1.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activated neutrophils, recruited to the airway of diseased lung, release human neutrophil peptides (HNP1-4) that are cytotoxic to airway cells as well as microbes. Airway epithelial cells express arginine-specific ADP ribosyltransferase (ART)-1, a GPI-anchored ART that transfers ADP-ribose from NAD to arginines 14 and 24 of HNP-1. We previously reported that ADP-ribosyl-arginine is converted nonenzymatically to ornithine and that ADP-ribosylated HNP-1 and ADP-ribosyl-HNP-(ornithine) were isolated from bronchoalveolar lavage fluid of a patient with idiopathic pulmonary fibrosis, indicating that these reactions occur in vivo. To determine effects of HNP-ornithine on the airway, three analogs of HNP-1, HNP-(R14orn), HNP-(R24orn), and HNP-(R14,24orn), were tested for their activity against Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus; their cytotoxic effects on A549, NCI-H441, small airway epithelial-like cells, and normal human lung fibroblasts; and their ability to stimulate IL-8 and TGF-β1 release from A549 cells, and to serve as ART1 substrates. HNP and the three analogs had similar effects on IL-8 and TGF-β1 release from A549 cells and were all cytotoxic for small airway epithelial cells, NCI-H441, and normal human lung fibroblasts. HNP-(R14,24orn), when compared with HNP-1 and HNP-1 with a single ornithine substitution for arginine 14 or 24, exhibited reduced cytotoxicity, but it enhanced proliferation of A549 cells and had antibacterial activity. Thus, arginines 14 and 24, which can be ADP ribosylated by ART1, are critical to the regulation of the cytotoxic and antibacterial effects of HNP-1. The HNP analog, HNP-(R14,24orn), lacks the epithelial cell cytotoxicity of HNP-1, but partially retains its antibacterial activity and thus may have clinical applications in airway disease.
    The Journal of Immunology 11/2014; 193(12). DOI:10.4049/jimmunol.1303068 · 5.36 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014