Article

Acute phase protein changes in calves during an outbreak of respiratory disease caused by bovine respiratory syncytial virus

Department of Animal Health and Environment, Estonian University of Life Sciences, Tartu, Estonia.
Comparative immunology, microbiology and infectious diseases (Impact Factor: 2.11). 11/2009; 34(1):23-9. DOI: 10.1016/j.cimid.2009.10.005
Source: PubMed

ABSTRACT Bovine acute phase proteins (APPs), lipopolysaccharide binding protein (LBP), serum amyloid A (SAA), haptoglobin (Hp) and alpha(1)-acid glycoprotein (AGP) were evaluated as inflammatory markers during an outbreak of bovine respiratory disease (BRD) caused by bovine respiratory syncytial virus (BRSV). Calves (n = 10) presented mild to moderate signs of respiratory disease. Secondary bacterial infections, Pasteurella multocida and Mycoplasma dispar as major species, were detected in tracheobronchial lavage samples. Concentrations of SAA and LBP increased at week 1 had the highest values at week 3 and decreased at week 4 of outbreak. Some calves had high Hp concentrations at week 3, but AGP concentrations did not rise during respiratory disease. Higher SAA, LBP and Hp concentrations at a later stage of BRD (week 3) were associated with the low BRSV-specific IgG(1) production, suggesting that these calves had enhanced inflammatory response to the secondary bacterial infection. In conclusion, APPs (especially SAA and LBP) are sensitive markers of respiratory infection, and they may be useful to explore host response to the respiratory infections in clinical research.

0 Followers
 · 
115 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bovine respiratory disease (BRD), which can cause substantial losses for feedlot operations, is often difficult to detect based solely on visual observations. The objectives of the current study were to determine a BRD case identification based on clinical and laboratory parameters and assess the value of feeding behavior for early detection of BRD. Auction-derived, mixed-breed beef steers (n = 213) with an average arrival weight of 294 kg were placed at a southern Alberta commercial feedlot equipped with an automated feed bunk monitoring system. Feeding behavior was recorded continuously (1-s intervals) for 5 wk after arrival and summarized into meals. Meals were defined as feeding events that were interrupted by less than 300 s non-feeding. Meal intake (g) and meal time (min) were further summarized into daily mean, minimum, maximum and sum, and together with frequency of meals per day, were fit into a discrete survival time analysis with a conditional log-log link. Feedlot staff visually evaluated (pen-checked) health status twice daily. Within 35 d after arrival, 76% (n = 165) of the steers had one or more clinical signs of BRD (reluctance to move, crusted nose, nasal or ocular discharge, drooped ears or head and gaunt appearance). While 41 blood samples could not be processed due to immediate freezing, for 124 of these steers, complete and differential blood cell count, total serum protein, plasma fibrinogen, serum concentration of haptoglobin (HP) and serum amyloid A (SAA) were determined. The disease definition for BRD was a rectal temperature ≥ 40.0°C, at least two clinical signs of BRD, and HP > 0.15 mg/mL. It was noteworthy that 94% of the 124 steers identified by the feedlot staff with clinical signs of BRD had HP > 0.15 mg/mL. An increase in mean meal intake, frequency and mean inter-meal interval time between meals was associated with a decreased hazard for developing BRD 7 d before visual identification (P < 0.001). Furthermore, increased mean mealtime, frequency and mean inter-meal interval time between meals were associated with a decreased BRD hazard up to 7 d before feedlot staff noticed clinical symptoms (P < 0.001). In conclusion, mean intake per meal as well as mean meal time and frequency of meals could be used to predict the hazard of BRD in feedlot cattle 7 d before visual detection and could be considered in commercial feedlot settings once a predictive algorithm has been developed.
    Journal of Animal Science 11/2014; 93(1). DOI:10.2527/jas.2014-8030 · 1.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute phase and inflammatory responses are triggered by a variety of intrinsic and extrinsic stressors that come at a cost through suppressing the normal function of tissues and organs of domestic animals. Recently, with growing attention placed on global warming and animal welfare, there has been an increased interest in improving our understanding of the relationships between different classes of stress, the expression of acute phase proteins (APPs), the stress-related endocrine system and immunomodulation. Immune function is compromised by all forms of stress including poor nutrition, weaning, extreme thermal conditions, injury and infection in calves. Proinflammatory cytokines, APPs and hormones of the hypothalamic-pituitary adrenal axis as well as the composition of immune cells can all be characterised in culture supernatants and peripheral blood. APPs have been used as biomarkers for the stress status of ruminants both experimentally and in field studies. Therefore detailed studies of the mechanisms of action of these APPs and their interactions in ameliorating different stress responses are warranted. The focus of this review is on the aetiology of the responses in calves under severe stress and its impact on growth and immune status. Possible strategies to alleviate this condition including the role of specific feed additives are presented.
    Animal Production Science 01/2014; 54(10):1561. DOI:10.1071/AN14441 · 1.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute infections with bovine viral diarrhoea virus (BVDV), a major pathogen of cattle, are often asymptomatic or produce only mild clinical symptoms. However, they may play an important role in the bovine respiratory disease complex by exerting a marked immunosuppressive effect, as a result of the death of the immunocompetent cell populations involved in controlling innate and adaptive immune responses, together with a marked reduction of both cytokine expression and co-stimulatory molecule synthesis. Although experimental research and field studies have shown that acute BVDV infection enhances susceptibility to secondary infection, the precise mechanism involved in BVDV-induced immunosuppression remains unclear. The present study is aimed at measuring a range of blood parameters in a single group of fourteen calves infected with non-cytopathic BVDV-1. Focus has been put on those related to the cell-mediated immune response just as leucocyte populations and lymphocyte subpopulations, serum concentrations of cytokines (IL-1β, TNF-α, IFN-γ, IL-12, IL-4 and IL-10) and acute phase proteins [haptoglobin, serum amyloid A (SAA), fibrinogen and albumin], as well as BVDV-specific antibodies and viremia. After non-cytopathic BVDV-1 infection, clinical signs intensity was never more than moderate coinciding with the presence of viremia and leucocyte and lymphocyte depletion. An early increase in TNF-α, IFN-γ and IL-12 levels in contrast to IL-1β was observed in line with a raise in haptoglobin and SAA levels on the latest days of the study. As regards IL-4 levels, no evidence was found of any changes. However, a slight increase in IL-10 was observed, matching up the TNF-α decline during the acute phase response. These findings would help to increase our knowledge of the immune mechanisms involved in acute infection with non-cytopathic BVDV-1 strains, suggesting the existence of a clear tendency towards a type 1 immune response, thereby enhancing resistance against viral infections.
    Transboundary and Emerging Diseases 09/2012; 61(1). DOI:10.1111/tbed.12002 · 3.12 Impact Factor