Article

FoxOs Cooperatively Regulate Diverse Pathways Governing Neural Stem Cell Homeostasis

Department of Medical Oncology, Belfer Institute for Applied Cancer Science, Harvard Medical School, Boston, MA 02115, USA.
Cell stem cell (Impact Factor: 22.15). 11/2009; 5(5):540-53. DOI: 10.1016/j.stem.2009.09.013
Source: PubMed

ABSTRACT The PI3K-AKT-FoxO pathway is integral to lifespan regulation in lower organisms and essential for the stability of long-lived cells in mammals. Here, we report the impact of combined FoxO1, 3, and 4 deficiencies on mammalian brain physiology with a particular emphasis on the study of the neural stem/progenitor cell (NSC) pool. We show that the FoxO family plays a prominent role in NSC proliferation and renewal. FoxO-deficient mice show initial increased brain size and proliferation of neural progenitor cells during early postnatal life, followed by precocious significant decline in the NSC pool and accompanying neurogenesis in adult brains. Mechanistically, integrated transcriptomic, promoter, and functional analyses of FoxO-deficient NSC cultures identified direct gene targets with known links to the regulation of human brain size and the control of cellular proliferation, differentiation, and oxidative defense. Thus, the FoxO family coordinately regulates diverse genes and pathways to govern key aspects of NSC homeostasis in the mammalian brain.

0 Followers
 · 
146 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurogenesis persists in adult mammals in specific brain areas, known as neurogenic niches. Adult neurogenesis is highly dynamic and is modulated by multiple physiological stimuli and pathological states. There is a strong interest in understanding how this process is regulated, particularly since active neuronal production has been demonstrated in both the hippocampus and the subventricular zone (SVZ) of adult humans. The molecular mechanisms that control neurogenesis have been extensively studied during embryonic development. Therefore, we have a broad knowledge of the intrinsic factors and extracellular signaling pathways driving proliferation and differentiation of embryonic neural precursors. Many of these factors also play important roles during adult neurogenesis, but essential differences exist in the biological responses of neural precursors in the embryonic and adult contexts. Because adult neural stem cells (NSCs) are normally found in a quiescent state, regulatory pathways can affect adult neurogenesis in ways that have no clear counterpart during embryogenesis. BMP signaling, for instance, regulates NSC behavior both during embryonic and adult neurogenesis. However, this pathway maintains stem cell proliferation in the embryo, while it promotes quiescence to prevent stem cell exhaustion in the adult brain. In this review, we will compare and contrast the functions of transcription factors (TFs) and other regulatory molecules in the embryonic brain and in adult neurogenic regions of the adult brain in the mouse, with a special focus on the hippocampal niche and on the regulation of the balance between quiescence and activation of adult NSCs in this region.
    Frontiers in Cellular Neuroscience 11/2014; 8:396. DOI:10.3389/fncel.2014.00396
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The regenerative decline of organisms during ageing is linked to the reduced proliferative activity, impaired function and exhaustion of tissue-specific stem and progenitor cells. Studies using heterochronic parabiosis, involving the surgical attachment of young and old organisms so that they share a common vascular system, have revealed that the systemic environment has a profound effect on stem cell function. In particular, specific youthful rejuvenating circulatory factors reverse age-related declines in stem cell function, whereas the old milieu contains inhibitory factors that impede stem cell function in young animals. Similarly, the effects of certain dietary interventions, namely calorie restriction, also induce a more youthful cellular and molecular phenotype in ageing stem cells throughout the body. Further to this, there are key molecular pathways involved in translating the availability of nutrients into altered stem cell function, including signalling in the insulin and insulin-like growth factor and mechanistic target of rapamycin (mTOR) pathways. In this review, we discuss the potential role of dietary interventions to promote a more rejuvenating systemic milieu in order to enhance stem cell function and promote healthy ageing. Copyright © 2014. Published by Elsevier B.V.
    Ageing Research Reviews 12/2014; 19. DOI:10.1016/j.arr.2014.11.004
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulated data indicate that self-renewal, multipotency, and differentiation of neural stem cells are under an intrinsic control mediated by alterations in the redox homeostasis. These dynamic redox changes not only reflect and support the ongoing metabolic and energetic processes, but also serve to coordinate redox-signaling cascades. Controlling particular redox couples seems to have a relevant impact on cell fate decision during development, adult neurogenesis and regeneration. Our own research provided initial evidence for the importance of NAD(+)-dependent enzymes in neural stem cell fate decision. In this review, we summarize recent knowledge on the active role of reactive oxygen species, redox couples and redox-signaling mechanisms on plasticity and function of neural stem and progenitor cells focusing on NAD(P)(+)/NAD(P)H-mediated processes. The compartmentalized subcellular sources and availability of oxidizing/reducing molecules in particular microenvironment define the specificity of redox regulation in modulating the delicate balance between stemness and differentiation of neural progenitors. The generalization of "reactive oxygen species" as well as the ambiguity of their origin might explain the diametrically-opposed findings in the field of redox-dependent cell fate reflected by the literature. Increasing knowledge of temporary and spatially defined redox regulation is of high relevance for the development of novel approaches in the field of cell-based regeneration of nervous tissue in various pathological states. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015. Published by Elsevier B.V.
    Biochimica et Biophysica Acta (BBA) - General Subjects 02/2015; 97. DOI:10.1016/j.bbagen.2015.01.022

Full-text (2 Sources)

Download
239 Downloads
Available from
May 28, 2014