Ion changes and signalling in perisynaptic glia.

Abteilung für Allgemeine Zoologie, FB Biologie, TU Kaiserslautern, D-67653 Kaiserslautern, Germany.
Brain Research Reviews (Impact Factor: 7.82). 11/2009; 63(1-2):113-29. DOI: 10.1016/j.brainresrev.2009.10.006
Source: PubMed

ABSTRACT The maintenance of ion gradients across plasma membranes is a prerequisite for the establishment of cellular membrane potentials, electrical signalling, and metabolite transport. At active synapses, pre- and postsynaptic ion gradients are constantly challenged and used for signalling purposes. Perisynaptic glia, mainly represented by fine processes of astrocytes which get into close vicinity to neuronal synapses, are required to normalize the extracellular ionic milieu and maintain ion gradients. On the other hand, perisynaptic glia itself is activated by synaptically released transmitters binding to plasma membrane receptors and transmitter carriers, and experiences significant ion changes as well. In this review we present an overview of dynamic changes of the major ion species in astrocytes in response to neuronal, especially synaptic, activity. We will focus on calcium, sodium, and proton/hydroxyl ions that play key roles in signalling processes, and will discuss the functional consequences of the glial ion signals and homeostatic processes for synaptic transmission.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein palmitoylation, a reversible lipid modification of proteins, is widely used in the nervous system, with dysregulated palmitoylation being implicated in a variety of neurological disorders. Described below is ABE/SILAM, a proteomic strategy that couples acyl-biotinyl exchange (ABE) purification of palmitoyl-proteins to whole animal stable isotope labeling (SILAM) to provide an accurate tracking of palmitoylation change within rodent disease models. As a first application, we have used ABE/SILAM to look at Huntington's disease (HD), profiling palmitoylation change in two HD-relevant mouse mutants: the transgenic HD model mouse YAC128 and the hypomorphic Hip14-gt mouse, which has sharply reduced expression for HIP14 (Zdhhc17), a palmitoyl-transferase implicated in the HD disease process. Rather than mapping to the degenerating neurons themselves, the biggest disease changes instead map to astrocytes and oligodendrocytes (i.e., the supporting glial cells).
    Chemistry & biology 11/2013; · 6.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Copper is an important trace element that is required for essential enzymes. However, due to its redox activity, copper can also lead to the generation of toxic reactive oxygen species. Therefore, cellular uptake, storage as well as export of copper have to be tightly regulated in order to garantee sufficient copper supply for the synthesis of copper-containing enzymes but also to prevent copper-induced oxidative stress. In brain, copper is of importance for normal development. In addition, both copper deficiency as well as excess of copper can seriously affect brain functions. Therefore, this organ possesses ample mechanisms to regulate its copper metabolism. In brain, astrocytes are considered as important regulators of copper homeostasis. Impairments of homeostatic mechanisms in brain copper metabolism have been associated with neurodegeneration in human disorders such as Menkes disease, Wilson's disease and Alzheimer's disease. This review article will summarize the biological functions of copper in the brain and will describe the current knowledge on the mechanisms involved in copper transport, storage and export of brain cells. The role of copper in diseases that have been connected with disturbances in brain copper homeostasis will also be discussed.
    Progress in Neurobiology 01/2014; · 9.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytes, which populate the grey and white mater of the brain and the spinal cord are highly heterogeneous in their morphology and function. These cells are primarily responsible for homeostasis of the central nervous system (CNS). Most central synapses are surrounded by exceedingly thin astroglial perisynaptic processes, which act as "astroglial cradle" critical for genesis, maturation and maintenance of synaptic connectivity. The perisynaptic glial processes are densely packed with numerous transporters, which provide for homeostasis of ions and neurotransmitters in the synaptic cleft, for local metabolic support and for release of astroglial derived scavengers of reactive oxygen species. Through perivascular processes astrocytes contribute to blood-brain barrier and form "glymphatic" drainage system of the CNS. Furthermore astrocytes are indispensible for glutamatergic and γ-aminobutyrate-ergic synaptic transmission being the supplier of neurotransmitters precursor glutamine via an astrocytic/neuronal cycle. Pathogenesis of many neurological disorders, including neuropsychiatric and neurodegenerative diseases is defined by loss of homeostatic function (astroglial asthenia) or remodelling of astroglial homoeostatic capabilities. Astroglial cells further contribute to neuropathologies through mounting complex defensive programme generally known as reactive astrogliosis.
    Neurochemical Research 08/2014; · 2.13 Impact Factor