Spatially sculpted laser scissors for study of DNA damage and repair

University of California, Irvine, Beckman Laser Institute and Medical Clinic, 1002 Health Sciences Road East, Irvine, California 92617, USA.
Journal of Biomedical Optics (Impact Factor: 2.86). 09/2009; 14(5):054004. DOI: 10.1117/1.3213601
Source: PubMed


We present a simple and efficient method for controlled linear induction of DNA damage in live cells. By passing a pulsed laser beam through a cylindrical lens prior to expansion, an elongated elliptical beam profile is created with the ability to expose controlled linear patterns while keeping the beam and the sample stationary. The length and orientation of the beam at the sample plane were reliably controlled by an adjustable aperture and rotation of the cylindrical lens, respectively. Localized immunostaining by the DNA double strand break (DSB) markers phosphorylated H2AX (gamma H2AX) and Nbs1 in the nuclei of HeLa cells exposed to the "line scissors" was shown via confocal imaging. The line scissors method proved more efficient than the scanning mirror and scanning stage methods at induction of DNA DSB damage with the added benefit of having a greater potential for high throughput applications.

Download full-text


Available from: Kyoko Yokomori, Oct 07, 2015
17 Reads
  • Source
    • "Optoporation [7, 8] ablates a single hole in the cell membrane at the focal point of a tightly focused pulsed laser beam. Two dimensional patterned membrane poration can also be achieved by rapidly scanning the laser focus within a field of view [9] or by using beam-shaping optics [10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We report a photothermal nanoblade that utilizes a metallic nanostructure to harvest short laser pulse energy and convert it into a highly localized and specifically shaped explosive vapor bubble. Rapid bubble expansion and collapse punctures a lightly-contacting cell membrane via high-speed fluidic flows and induced transient shear stress. The membrane cutting pattern is controlled by the metallic nanostructure configuration, laser pulse polarization, and energy. Highly controllable, sub-micron sized circular hole pairs to half moon-like, or cat-door shaped, membrane cuts were realized in glutaraldehyde treated HeLa cells.
    Optics Express 10/2010; 18(22):23153-60. DOI:10.1364/OE.18.023153 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study the femtosecond near-IR and nanosecond green lasers are used to induce alterations in mitotic chromosomes. The subsequent double-strand break responses are studied. We show that both lasers are capable of creating comparable chromosomal alterations and that a phase paling observed within 1-2 s of laser exposure is associated with an alteration of chromatin as confirmed by serial section electron microscopy, DAPI, γH2AX and phospho-H3 staining. Additionally, the accumulation of dark material observed using phase contrast light microscopy (indicative of a change in refractive index of the chromatin) ∼ 34 s post-laser exposure corresponds spatially to the accumulation of Nbs1, Ku and ubiquitin. This study demonstrates that chromosomes selectively altered in mitosis initiate the DNA damage response within 30 s and that the accumulation of proteins are visually represented by phase-dark material at the irradiation site, allowing us to determine the fate of the damage as cells enter G1. These results occur with two widely different laser systems, making this approach to study DNA damage responses in the mitotic phase generally available to many different labs. Additionally, we present a summary of most of the published laser studies on chromosomes in order to provide a general guide of the lasers and operating parameters used by other laboratories.
    Nucleic Acids Research 10/2010; 38(22):e202. DOI:10.1093/nar/gkq836 · 9.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Light-induced toxicity is a fundamental bottleneck in microscopic imaging of live embryos. In this article, after a review of photodamage mechanisms in cells and tissues, we assess photo-perturbation under illumination conditions relevant for point-scanning multiphoton imaging of live Drosophila embryos. We use third-harmonic generation (THG) imaging of developmental processes in embryos excited by pulsed near-infrared light in the 1.0-1.2 µm range. We study the influence of imaging rate, wavelength, and pulse duration on the short-term and long-term perturbation of development and define criteria for safe imaging. We show that under illumination conditions typical for multiphoton imaging, photodamage in this system arises through 2- and/or 3-photon absorption processes and in a cumulative manner. Based on this analysis, we derive general guidelines for improving the signal-to-damage ratio in two-photon (2PEF/SHG) or THG imaging by adjusting the pulse duration and/or the imaging rate. Finally, we report label-free time-lapse 3D THG imaging of gastrulating Drosophila embryos with sampling appropriate for the visualisation of morphogenetic movements in wild-type and mutant embryos, and long-term multiharmonic (THG-SHG) imaging of development until hatching.
    PLoS ONE 08/2014; 9(8):e104250. DOI:10.1371/journal.pone.0104250 · 3.23 Impact Factor