"Neural efficiency" of experts' brain during judgment of actions: a high-resolution EEG study in elite and amateur karate athletes.

Department of Biomedical Sciences, University of Foggia, Foggia, Italy.
Behavioural brain research (Impact Factor: 3.39). 11/2009; 207(2):466-75. DOI: 10.1016/j.bbr.2009.10.034
Source: PubMed

ABSTRACT Here we tested two working hypotheses on spatially selective cortical activation ("neural efficiency") in experts: (i) compared to non-athletes, elite karate athletes are characterized by a reduced cortical activation during the judgment of karate actions; (ii) compared to non-athletes and elite karate athletes, amateur karate athletes are characterized by an intermediate cortical activation during the judgment of karate actions. Electroencephalographic (EEG) data were recorded in 16 elite karate athletes, 15 amateur athletes and 17 non-athletes. They observed a series of 120 karate videos. At the end of each video, the subjects had to judge the technical/athletic level of the exercise by a scale from 0 to 10. The mismatch between their judgment and that of the coach indexed the degree of action judgment. The EEG cortical sources were estimated by sLORETA. With reference to a pre-stimulus period, the power decrease of alpha (8-12 Hz) rhythms during the video indexed the cortical activation (event-related desynchronization, ERD). Regarding the hypothesis of reduced activity in elite karate athletes, low- and high-frequency alpha ERD was less pronounced in dorsal and "mirror" pathways in the elite karate athletes than in the non-athletes. Regarding the hypothesis of intermediate cortical activity in amateur karate athletes, low- and high-frequency alpha ERD was less pronounced in dorsal pathways across the non-athletes, the amateur karate athletes, and the elite karate athletes. In conclusion, athletes' judgment of observed sporting actions is related to less pronounced alpha ERD, as a possible index of "neural efficiency" in experts engaged in social cognition.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Motor imagery (MI) and action observation (AO) are considered effective cognitive tools for motor learning, but little work directly compared their cortical activation correlate in relation with subsequent performance. We compared AO and MI in promoting early learning of a complex four-limb, hand-foot coordination task, using electroencephalographic (EEG) and kinematic analysis. Thirty healthy subjects were randomly assigned into three groups to perform a training period in which AO watched a video of the task, MI had to imagine it, and Control (C) was involved in a distracting computation task. Subjects were then asked to actually perform the motor task with kinematic measurement of error time with respect to the correct motor performance. EEG was recorded during baseline, training and task execution, with task-related power (TRPow) calculation for sensorimotor (alpha and beta) rhythms reactive with respect to rest. During training, the AO group had a stronger alpha desynchronization than the MI and C over frontocentral and bilateral parietal areas. However, during task execution, AO group had greater beta synchronization over bilateral parietal regions than MI and C groups. This beta synchrony furthermore demonstrated the strongest association with kinematic errors, which was also significantly lower in AO than in MI. These data suggest that sensorimotor activation elicited by action observation enhanced motor learning according to motor performance, corresponding to a more efficient activation of cortical resources during task execution. Action observation may be more effective than motor imagery in promoting early learning of a new complex coordination task. Copyright © 2014. Published by Elsevier B.V.
    Behavioural Brain Research 12/2014; 281. DOI:10.1016/j.bbr.2014.12.016 · 3.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Functional hemispheric asymmetry is assumed to constitute one underlying neurophysiological mechanism of flow-experience and skilled psycho-motor performance in table tennis athletes. We hypothesized that when initiating motor execution during motor imagery elite table tennis players show higher right- than left-hemispheric temporal activity and stronger right temporal-premotor than left temporal-premotor theta coherence compared to amateurs. We additionally investigated, whether less pronounced left temporal cortical activity is associated with more world rank points and more flow-experience. To this aim, electroencephalographic data were recorded in 14 experts and 15 amateur table tennis players. Subjects watched videos of an opponent serving a ball and were instructed to imagine themselves responding with a specific table tennis stroke. Alpha asymmetry scores were calculated by subtracting left from right hemispheric 8-13 Hz alpha power. 4-7 Hz theta coherence was calculated between temporal (T3/T4) and premotor (Fz) cortex. Experts showed a significantly stronger shift towards lower relative left-temporal brain activity compared to amateurs and a significantly stronger right temporal-premotor coherence than amateurs. The shift towards lower relative left-temporal brain activity in experts was associated with more flow-experience and lower relative left temporal activity was correlated with more world rank points. The present findings suggest that skilled psycho-motor performance in elite table tennis players reflect less desynchronized brain activity at the left hemisphere and more coherent brain activity between fronto-temporal and premotor oscillations at the right hemisphere. This pattern probably reflect less interference of irrelevant communication of verbal-analytical with motor-control mechanisms which implies flow-experience and predict world rank in experts.
    Biological Psychology 01/2015; in press. DOI:10.1016/j.biopsycho.2015.01.007 · 3.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: (1) compared with amateurs and young elite, expert table tennis players are characterized by enhanced cortical activation in the motor and fronto-parietal cortex during motor imagery in response to table tennis videos; (2) in elite athletes, world rank points are associated with stronger cortical activation. To this aim, electroencephalographic data were recorded in 14 expert, 15 amateur and 15 young elite right-handed table tennis players. All subjects watched videos of a serve and imagined themselves responding with a specific table tennis stroke. With reference to a baseline period, power decrease/increase of the sensorimotor rhythm (SMR) during the pretask- and task period indexed the cortical activation/deactivation (event-related desynchronization/synchronization, ERD/ERS). Regarding hypothesis (1), 8-10 Hz SMR ERD was stronger in elite athletes than in amateurs with an intermediate ERD in young elite athletes in the motor cortex. Regarding hypothesis (2), there was no correlation between ERD/ERS in the motor cortex and world rank points in elite experts, but a weaker ERD in the fronto-parietal cortex was associated with higher world rank points. These results suggest that motor skill in table tennis is associated with focused excitability of the motor cortex during reaction, movement planning and execution with high attentional demands. Among elite experts, less activation of the fronto-parietal attention network may be necessary to become a world champion.
    Frontiers in Behavioral Neuroscience 10/2014; 8:370. DOI:10.3389/fnbeh.2014.00370 · 4.16 Impact Factor