Article

Direct visualization of disulfide bonds through diselenide proxies using 77Se NMR spectroscopy.

Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia.
Angewandte Chemie International Edition (Impact Factor: 11.34). 11/2009; 48(49):9312-4. DOI: 10.1002/anie.200905206
Source: PubMed

ABSTRACT Se-ing is believing: Many proteins are cross-braced by disulfide bonds that frequently play key roles in protein structure, folding, and function. Unfortunately, the methods available for assignment of disulfide-bond connectivities in proteins are technically difficult and prone to misinterpretation. Now disulfide bond connectivities in native proteins can be visualized directly using 77Se NMR spectroscopy.

0 Bookmarks
 · 
120 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pest insect species are a burden to humans as they destroy crops and serve as vectors for a wide range of diseases including malaria and dengue. Chemical insecticides are currently the dominant approach for combating these pests. However, the de-registration of key classes of chemical insecticides due to their perceived ecological and human health risks in combination with the development of insecticide resistance in many pest insect populations has created an urgent need for improved methods of insect pest control. The venoms of arthropod predators such as spiders and scorpions are a promising source of novel insecticidal peptides that often have different modes of action to extant chemical insecticides. These peptides have been optimized via a prey-predator arms race spanning hundreds of millions of years to target specific types of insect ion channels and receptors. Here we review the current literature on insecticidal venom peptides, with a particular focus on their structural and pharmacological diversity, and discuss their potential for deployment as insecticides.
    Cellular and Molecular Life Sciences CMLS 03/2013; · 5.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The μ-conotoxin KIIIA is a three disulfide-bridged blocker of voltage-gated sodium channels (VGSCs). The Lys(7) residue in KIIIA is an attractive target for manipulating the selectivity and efficacy of this peptide. Here, we report the design and chemical synthesis of μ-conopeptoid analogues (peptomers) in which we replaced Lys(7) with peptoid monomers of increasing side-chain size: N-methylglycine, N-butylglycine and N-octylglycine. In the first series of analogues, the peptide core contained all three disulfide bridges; whereas in the second series, a disulfide-depleted selenoconopeptide core was used to simplify oxidative folding. The analogues were tested for functional activity in blocking the Nav1.2 subtype of mammalian VGSCs exogenously expressed in Xenopus oocytes. All six analogues were active, with the N-methylglycine analogue, [Sar(7)]KIIIA, the most potent in blocking the channels while favouring lower efficacy. Our findings demonstrate that the use of N-substituted Gly residues in conotoxins show promise as a tool to optimize their pharmacological properties as potential analgesic drug leads.
    European journal of medicinal chemistry 05/2013; 65C:144-150. · 3.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Structural and functional studies of small, disulfide-rich peptides depend on their efficient chemical synthesis and folding. A large group of peptides derived from animals and plants contains the Cys pattern C-C-CC-C-C that forms the inhibitory cystine knot (ICK) or knottin motif. Here we report the effect of site-specific incorporation of pairs of selenocysteine residues on oxidative folding and the functional activity of omega-conotoxin GVIA, a well-characterized ICK-motif peptidic antagonist of voltage-gated calcium channels. Three selenoconotoxin GVIA analogues were chemically synthesized; all three folded significantly faster in the glutathione-based buffer compared to wild-type GVIA. One analogue, GVIA[C8U,C19U], exhibited significantly higher folding yields. A recently described NMR-based method was used for mapping the disulfide connectivities in the three selenoconotoxin analogues. The diselenide-directed oxidative folding of selenoconotoxins was predominantly driven by amino acid residue loop sizes formed by the resulting diselenide and disulfide cross-links. Both in vivo and in vitro activities of the analogues were assessed; the block of N-type calcium channels was comparable among the analogues and wild-type GVIA, suggesting that the diselenide replacement did not affect the bioactive conformation. Thus, diselenide substitution may facilitate oxidative folding of pharmacologically diverse ICK peptides. The diselenide replacement has been successfully applied to a growing number of bioactive peptides, including alpha-, mu-, and omega-conotoxins, suggesting that the integrated oxidative folding of selenopeptides described here may prove to be a general approach for efficient synthesis of diverse classes of disulfide-rich peptides.
    Biochemistry 02/2010; 49(12):2741-52. · 3.38 Impact Factor