Article

Characterization of Alternative Isoforms and Inclusion Body of the TAR DNA-binding Protein-43

Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
Journal of Biological Chemistry (Impact Factor: 4.6). 11/2009; 285(1):608-19. DOI: 10.1074/jbc.M109.022012
Source: PubMed

ABSTRACT TAR DNA-binding protein-43 (TDP-43) has been recently identified as a major component of the ubiquitinated inclusions found in frontotemporal lobar degeneration with ubiquitin-positive inclusions and in amyotrophic lateral sclerosis, diseases that are collectively termed TDP-43 proteinopathies. Several amyotrophic lateral sclerosis-linked mutations of the TDP-43 gene have also been identified; however, the precise molecular mechanisms underlying the neurodegeneration remain unclear. To investigate the biochemical characteristics of TDP-43, we examined truncation, isoforms, and cytoplasmic inclusion (foci) formation using TDP-43-expressing cells. Under apoptosis, caspase-3 generates two 35-kDa (p35f) and 25-kDa (p25f) fragments. However, in caspase-3(-/-) cells, novel caspase-3-independent isoforms of these two variants (p35iso and p25iso) were also detected under normal conditions. With a deletion mutant series, the critical domains for generating both isoforms were determined and applied to in vitro transcription/translation, revealing alternate in-frame translation start sites downstream of the natural initiation codon. Subcellular localization analysis indicated that p35 (p35f and p35iso) expression leads to the formation of stress granules, cellular structures that package mRNA and RNA-binding proteins during cell stress. After applying proteasome inhibitors, aggresomes, which are aggregates of misfolded proteins, were formed in the cytoplasm of cells expressing p35. Collectively, this study demonstrates that the 35-kDa isoforms of TDP-43 assemble in stress granules, suggesting that TDP-43 plays an important role in translation, stability, and metabolism of mRNA. Our findings provide new biological and pathological insight into the development of TDP-43 proteinopathies.

0 Followers
 · 
107 Views
  • Source
    Reproduction Fertility and Development 10/2014; DOI:10.1071/RD14090 · 2.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The expansion of the GGGGCC hexanucleotide repeat in the non-coding region of the chromosome 9 open reading frame 72 (C9orf72) gene is the most common cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) (c9FTD/ALS). Recently, it was reported that an unconventional mechanism of repeat-associated non-ATG (RAN) translation arises from C9orf72 expansion. Sense and anti-sense transcripts of the expanded C9orf72 repeat, i.e., the dipeptide repeat protein (DRP) of glycine-alanine (poly-GA), glycine-proline (poly-GP), glycine-arginine (poly-GR), proline-arginine (poly-PR), and proline-alanine (poly-PA) are deposited in the brains of patients with c9FTD/ALS. However, the pathological significance of RAN-translated peptides remains unknown. We generated synthetic cDNAs encoding 100 repeats of DRP without a GGGGCC repeat and evaluated the effects of these proteins on cultured cells and cortical neurons in vivo. Our results revealed that the poly-GA protein formed highly aggregated ubiquitin/p62-positive inclusion bodies in neuronal cells. In contrast, the highly basic proteins poly-GR and PR also formed unique ubiquitin/p62-negative cytoplasmic inclusions, which colocalized with the components of RNA granules. The evaluation of cytotoxicity revealed that overexpressed poly-GA, -GP, and -GR increased the substrates of the ubiquitin-proteasome system (UPS), including TDP-43, and enhanced the sensitivity to a proteasome inhibitor, indicating that these DRPs are cytotoxic, possibly via UPS dysfunction. The present data indicate that a gain-of-function mechanism of toxic DRPs possibly contributes to pathogenesis in c9FTD/ALS and that DRPs may serve as novel therapeutic targets in c9FTD/ALS.
    Human Molecular Genetics 11/2014; DOI:10.1093/hmg/ddu576 · 6.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of lower molecular weight species comprising the C-terminal region of TAR DNA-binding protein 43 (TDP-43) is a characteristic of TDP-43 proteinopathy in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here, we have identified a novel splice variant of TDP-43 that is upregulated in ALS and generates a 35-kDa N-terminally truncated species through use of an alternate translation initiation codon (ATG(Met85)), denoted here as Met(85)-TDP-35. Met(85)-TDP-35 expressed ectopically in human neuroblastoma cells exhibited reduced solubility, cytoplasmic distribution, and aggregation. Furthermore, Met(85)-TDP-35 sequestered full-length TDP-43 from the nucleus to form cytoplasmic aggregates. Expression of Met(85)-TDP-35 in primary motor neurons resulted in the formation of Met(85)-TDP-35-positive cytoplasmic aggregates and motor neuron death. A neo-epitope antibody specific for Met(85)-TDP-35 labeled the 35-kDa lower molecular weight species on immunoblots of urea-soluble extracts from ALS-FTLD disease-affected tissues and co-labeled TDP-43-positive inclusions in ALS spinal cord sections, confirming the physiological relevance of this species. These results show that the 35-kDa low molecular weight species in ALS-FTLD can be generated from an abnormal splicing event and use of a downstream initiation codon and may represent a mechanism by which TDP-43 elicits its pathogenicity.
    Acta Neuropathologica 03/2015; DOI:10.1007/s00401-015-1412-5 · 9.78 Impact Factor