Article

Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion

The Department of Surgery, San Francisco General Hospital, University of California San Francisco, San Francisco, CA 94110, USA.
Critical care (London, England) (Impact Factor: 5.04). 11/2009; 13(6):R174. DOI: 10.1186/cc8152
Source: PubMed

ABSTRACT High mobility group box nuclear protein 1 (HMGB1) is a DNA nuclear binding protein that has recently been shown to be an early trigger of sterile inflammation in animal models of trauma-hemorrhage via the activation of the Toll-like-receptor 4 (TLR4) and the receptor for the advanced glycation endproducts (RAGE). However, whether HMGB1 is released early after trauma hemorrhage in humans and is associated with the development of an inflammatory response and coagulopathy is not known and therefore constitutes the aim of the present study.
One hundred sixty eight patients were studied as part of a prospective cohort study of severe trauma patients admitted to a single Level 1 Trauma center. Blood was drawn within 10 minutes of arrival to the emergency room before the administration of any fluid resuscitation. HMGB1, tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, von Willebrand Factor (vWF), angiopoietin-2 (Ang-2), Prothrombin time (PT), prothrombin fragments 1+2 (PF1+2), soluble thrombomodulin (sTM), protein C (PC), plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (tPA) and D-Dimers were measured using standard techniques. Base deficit was used as a measure of tissue hypoperfusion. Measurements were compared to outcome measures obtained from the electronic medical record and trauma registry.
Plasma levels of HMGB1 were increased within 30 minutes after severe trauma in humans and correlated with the severity of injury, tissue hypoperfusion, early posttraumatic coagulopathy and hyperfibrinolysis as well with a systemic inflammatory response and activation of complement. Non-survivors had significantly higher plasma levels of HMGB1 than survivors. Finally, patients who later developed organ injury, (acute lung injury and acute renal failure) had also significantly higher plasma levels of HMGB1 early after trauma.
The results of this study demonstrate for the first time that HMGB1 is released into the bloodstream early after severe trauma in humans. The release of HMGB1 requires severe injury and tissue hypoperfusion, and is associated with posttraumatic coagulation abnormalities, activation of complement and severe systemic inflammatory response.

0 Bookmarks
 · 
94 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose of review To discuss the fluid resuscitation and the vasopressor support in severe trauma patients. Recent findings A critical point is to prevent a potential increase in bleeding by an overly aggressive resuscitative strategy. Indeed, large-volume fluid replacement may promote coagulopathy by diluting coagulation factors. Moreover, an excessive level of mean arterial pressure may induce bleeding by preventing clot formation. Summary Fluid resuscitation is the first-line therapy to restore intravascular volume and to prevent cardiac arrest. Thus, fluid resuscitation before bleeding control must be limited to the bare minimum to maintain arterial pressure to minimize dilution of coagulation factors and complications of over fluid resuscitation. However, a strategy of low fluid resuscitation needs to be handled in a flexible way and to be balanced considering the severity of the hemorrhage and the transport time. A target systolic arterial pressure of 80-90 mmHg is recommended until the control of hemorrhage in trauma patients without brain injury. In addition to fluid resuscitation, early vasopressor support may be required to restore arterial pressure and prevent excessive fluid resuscitation. It is crucial to find the best alchemy between fluid resuscitation and vasopressors, to consider hemodynamic monitoring and to establish trauma resuscitative protocols.
    Current Opinion in Critical Care 10/2014; 20(6). DOI:10.1097/MCC.0000000000000159 · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background. Previous studies showed significant interaction between the local and systemic inflammatory response after severe trauma in small animal models. The purpose of this study was to establish a new combined trauma model in pigs to investigate fracture-associated local inflammation and gain information about the early inflammatory stages after polytrauma. Material and Methods. Combined trauma consisted of tibial fracture, lung contusion, liver laceration, and controlled hemorrhage. Animals were mechanically ventilated and under ICU-monitoring for 48 h. Blood and fracture hematoma samples were collected during the time course of the study. Local and systemic levels of serum cytokines and diverse alarmins were measured by ELISA kit. Results. A statistical significant difference in the systemic serum values of IL-6 and HMGB1 was observed when compared to the sham. Moreover, there was a statistical significant difference in the serum values of the fracture hematoma of IL-6, IL-8, IL-10, and HMGB1 when compared to the systemic inflammatory response. However a decrease of local proinflammatory concentrations was observed while anti-inflammatory mediators increased. Conclusion. Our data showed a time-dependent activation of the local and systemic inflammatory response. Indeed it is the first study focusing on the local and systemic inflammatory response to multiple-trauma in a large animal model.
    Mediators of Inflammation 01/2015; 2015:126060. DOI:10.1155/2015/126060 · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Knowing the pathophysiology of trauma-induced coagulopathy is important for the management of severely injured trauma patients. The aims of this review are to provide a summary of the recent advances in our understanding of thrombosis and hemostasis following trauma and to discuss the pathogenesis of disseminated intravascular coagulation (DIC) at an early stage of trauma. Local hemostasis and thrombosis respectively act to induce physiological wound healing of injuries and innate immune responses to damaged-self following trauma. However, if overwhelmed by systemic inflammation caused by extensive tissue damage and tissue hypoperfusion, both of these processes foster systemic DIC associated with pathological fibrin(ogen)olysis. This is called DIC with the fibrinolytic phenotype, which is characterized by the activation of coagulation, consumption coagulopathy, insufficient control of coagulation, and increased fibrin(ogen)olysis. Irrespective of microvascular thrombosis, the condition shows systemic thrombin generation as well as its activation in the circulation and extensive damage to the microvasculature endothelium. DIC with the fibrinolytic phenotype gives rise to oozing-type non-surgical bleeding and greatly affects the prognosis of trauma patients. The coexistences of hypothermia, acidosis, and dilution aggravate DIC and lead to so-called trauma-induced coagulopathy. He that would know what shall be must consider what has been. The Analects of Confucius.
    Critical Care 02/2015; 19(1). DOI:10.1186/s13054-015-0735-x · 5.04 Impact Factor

Preview (3 Sources)

Download
0 Downloads
Available from