Tip60-ing the balance in DSB repair

Nature Cell Biology (Impact Factor: 19.68). 11/2009; 11(11):1279-81. DOI: 10.1038/ncb1109-1279
Source: PubMed


The tumour suppressor Tip60 is a histone acetyltransferase implicated in transcriptional control and DNA double-strand break repair. Tip60 binds to the heterochromatic histone mark H3K9me3, triggering acetylation and activation of DNA double-strand break repair factors.

2 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The histone acetyltransferase TIP60, a frequent target of monoallelic loss in human carcinomas, can acetylate many substrates, including histones and p53, and thus promote apoptosis following UV radiation. Here we showed that TIP60 is autoacetylated in response to UV damage, which is critically important for TIP60 activation. Mechanistically we demonstrated that TIP60 autoacetylation leads to the dissociation of TIP60 oligomer and enhances its interaction with substrates. Moreover, we identified SIRT1 that specifically deacetylates TIP60 and negatively regulates TIP60 activity in vivo. Taken together, our data reveal TIP60 autoacetylation as a key step in the control of its histone acetyltransferase activity and function in response to DNA damage.
    Journal of Biological Chemistry 04/2010; 285(15):11458-64. DOI:10.1074/jbc.M109.087585 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Damage to our genetic material is an ongoing threat to both our ability to faithfully transmit genetic information to our offspring as well as our own survival. To respond to these threats, eukaryotes have evolved the DNA damage response (DDR). The DDR is a complex signal transduction pathway that has the ability to sense DNA damage and transduce this information to the cell to influence cellular responses to DNA damage. Cells possess an arsenal of enzymatic tools capable of remodeling and repairing DNA; however, their activities must be tightly regulated in a temporal, spatial, and DNA lesion-appropriate fashion to optimize repair and prevent unnecessary and potentially deleterious alterations in the structure of DNA during normal cellular processes. This review will focus on how the DDR controls DNA repair and the phenotypic consequences of defects in these critical regulatory functions in mammals.
    Molecular cell 10/2010; 40(2):179-204. DOI:10.1016/j.molcel.2010.09.019 · 14.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear EGFR is involved in cellular stress management and regulation of cellular radio-sensitivity. The aim of this study was to elucidate the molecular mode of nuclear EGFR action. Radiation induced nuclear EGFR-shuttling and EGFR-foci formation was analyzed with immunohistochemistry and confocal microscopy. Composition of γH(2)AX-protein complexes was analyzed by western-blotting after immuno-precipitation. Functional relevance of nuclear EGFR was analyzed after siRNA mediated depletion of EGFR with respect to activation of ATM, histone H3 acetylation, residual DNA-damage and cell survival after irradiation. Following radiation nuclear EGFR was localized in foci similar to γH(2)AX. EGFR co-localized in a sub-fraction of γH(2)AX-foci. Analysis of composition of γH(2)AX-complexes revealed presence of EGFR, ATM, promyelocytic leukemia protein (PML), histone H3 and hetero-chromatin binding protein (HP1) in response to radiation. Depletion of EGFR protein inhibited ATM activation due to inhibition of acetylase TIP60 activity following irradiation. Consequently, histone H3 acetylation and phosphorylation was blocked and chromatin could not be opened for repair. Thus, residual DNA-damage was increased 24 h after irradiation and cells were radio-sensitized. Comparable results were obtained when cells were treated with EGFR-NLS-peptide, which blocks EGFR nuclear shuttling specifically. Nuclear EGFR is part of DNA-damage repair complex and is involved in regulation of TIP60-acetylase activity. TIP60 is essential for ATM activation and chromatin relaxation which is a prerequisite for DNA-repair in heterochromatic DNA. Thus interventional EGFR strategies during tumor treatment may also interact with DNA-repair by blocking access to damaged DNA.
    Radiotherapy and Oncology 06/2011; 99(3):317-22. DOI:10.1016/j.radonc.2011.06.001 · 4.36 Impact Factor
Show more