Mfge8 diminishes the severity of tissue fibrosis in mice by binding and targeting collagen for uptake by macrophages.

Lung Biology Center, Cardiovascular Research Institute, UCSF, San Francisco, California, USA.
The Journal of clinical investigation (Impact Factor: 13.77). 11/2009; 119(12):3713-22. DOI: 10.1172/JCI40053
Source: PubMed

ABSTRACT Milk fat globule epidermal growth factor 8 (Mfge8) is a soluble glycoprotein known to regulate inflammation and immunity by mediating apoptotic cell clearance. Since fibrosis can occur as a result of exaggerated apoptosis and inflammation, we set out to investigate the hypothesis that Mfge8 might negatively regulate tissue fibrosis. We report here that Mfge8 does decrease the severity of tissue fibrosis in a mouse model of pulmonary fibrosis; however, it does so not through effects on inflammation and apoptotic cell clearance, but by binding and targeting collagen for cellular uptake through its discoidin domains. Initial analysis revealed that Mfge8-/- mice exhibited enhanced pulmonary fibrosis after bleomycin-induced lung injury. However, they did not have increased inflammation or impaired apoptotic cell clearance after lung injury compared with Mfge8+/+ mice; rather, they had a defect in collagen turnover. Further experiments indicated that Mfge8 directly bound collagen and that Mfge8-/- macrophages exhibited defective collagen uptake that could be rescued by recombinant Mfge8 containing at least one discoidin domain. These data demonstrate a critical role for Mfge8 in decreasing the severity of murine tissue fibrosis by facilitating the removal of accumulated collagen.

Download full-text


Available from: Paul J Wolters, Dec 09, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resolution of inflammation is a coordinated and active process aimed at restoration of tissue integrity and function. This review integrates the key molecular and cellular mechanisms of resolution. We describe how abrogation of chemokine signalling blocks continued neutrophil tissue infiltration and how apoptotic neutrophils attract monocytes and macrophages to induce their clearance. Uptake of apoptotic neutrophils by macrophages reprograms macrophages towards a resolving phenotype, a key event to restore tissue homeostasis. Finally, we highlight the therapeutic potential that derives from understanding the mechanisms of resolution.
    EMBO Molecular Medicine 05/2013; 5(5). DOI:10.1002/emmm.201202382
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Programmed cell clearance is a physiological process of elimination of apoptotic cell corpses. Recent studies have disclosed several ligand-receptor interactions that dictate the recognition or non-recognition of cells by macrophages and other phagocytes. The externalization of the anionic phospholipid, phosphatidylserine is effectively recognized by specific receptors on professional phagocytes and facilitates the clearance of apoptotic cells. Macrophage disposal of cells at sites of inflammation is believed to play an important role in the resolution of the inflammatory process, and recent studies have suggested a role for the NADPH oxidase in the process of macrophage elimination of activated neutrophils. The present review will focus on the molecular regulation of programmed cell clearance, and discuss the role of cell elimination in the resolution of inflammation.
    Biochemical and Biophysical Research Communications 05/2010; 396(1):7-10. DOI:10.1016/j.bbrc.2010.02.106
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages are found in close proximity with collagen-producing myofibroblasts and indisputably play a key role in fibrosis. They produce profibrotic mediators that directly activate fibroblasts, including transforming growth factor-beta1 and platelet-derived growth factor, and control extracellular matrix turnover by regulating the balance of various matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases. Macrophages also regulate fibrogenesis by secreting chemokines that recruit fibroblasts and other inflammatory cells. With their potential to act in both a pro- and antifibrotic capacity, as well as their ability to regulate the activation of resident and recruited myofibroblasts, macrophages and the factors they express are integrated into all stages of the fibrotic process. These various, and sometimes opposing, functions may be performed by distinct macrophage subpopulations, the identification of which is a growing focus of fibrosis research. Although collagen-secreting myofibroblasts once were thought of as the master "producers" of fibrosis, this review will illustrate how macrophages function as the master "regulators" of fibrosis.
    Seminars in Liver Disease 08/2010; 30(3):245-57. DOI:10.1055/s-0030-1255354