Lifetime and strength of periodic bond clusters between elastic media under inclined loading.

Division of Engineering, Brown University, Providence, Rhode Island, USA.
Biophysical Journal (Impact Factor: 3.67). 11/2009; 97(9):2438-45. DOI:10.1016/j.bpj.2009.08.027
Source: PubMed

ABSTRACT Focal adhesions are clusters of specific receptor-ligand bonds that link an animal cell to an extracellular matrix. To understand the mechanical responses of focal adhesions, here we develop a stochastic-elasticity model of a periodic array of adhesion clusters between two dissimilar elastic media subjected to an inclined tensile stress, in which stochastic descriptions of molecular bonds and elastic descriptions of interfacial traction are unified in a single modeling framework. We first establish a fundamental scaling law of interfacial traction distribution and derive a stress concentration index that governs the transition between uniform and cracklike singular distributions of the interfacial traction within molecular bonds. Guided by this scaling law, we then perform Monte Carlo simulations to investigate the effects of cluster size, cell/extracellular matrix modulus, and loading direction on lifetime and strength of the adhesion clusters. The results show that intermediate adhesion size, stiff substrate, cytoskeleton stiffening, and low-angle pulling are factors that contribute to the stability of focal adhesions. The predictions of our model provide feasible explanations for a wide range of experimental observations and suggest possible mechanisms by which cells can modulate adhesion and deadhesion via cytoskeletal contractile machinery and sense mechanical properties of their surroundings.

0 0
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Many essential cellular functions in health and disease are closely linked to the ability of cells to respond to mechanical forces. In the context of cell adhesion to the extracellular matrix, the forces that are generated within the actin cytoskeleton and transmitted through integrin-based focal adhesions are essential for the cellular response to environmental clues, such as the spatial distribution of adhesive ligands or matrix stiffness. Whereas substantial progress has been made in identifying mechanosensitive molecules that can transduce mechanical force into biochemical signals, much less is known about the nature of cytoskeletal force generation and transmission that regulates the magnitude, duration and spatial distribution of forces imposed on these mechanosensitive complexes. By focusing on cell-matrix adhesion to flat elastic substrates, on which traction forces can be measured with high temporal and spatial resolution, we discuss our current understanding of the physical mechanisms that integrate a large range of molecular mechanotransduction events on cellular scales. Physical limits of stability emerge as one important element of the cellular response that complements the structural changes affected by regulatory systems in response to mechanical processes.
    Journal of Cell Science 07/2012; 125(Pt 13):3051-60. · 5.88 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Adhesions are multi-molecular complexes that transmit forces generated by a cell's acto-myosin networks to external substrates. While the physical properties of some of the individual components of adhesions have been carefully characterized, the mechanics of the coupling between the cytoskeleton and the adhesion site as a whole are just beginning to be revealed. We characterized the mechanics of nascent adhesions mediated by the immunoglobulin-family cell adhesion molecule apCAM, which is known to interact with actin filaments. Using simultaneous visualization of actin flow and quantification of forces transmitted to apCAM-coated beads restrained with an optical trap, we found that adhesions are dynamic structures capable of transmitting a wide range of forces. For forces in the picoNewton scale, the nascent adhesions' mechanical properties are dominated by an elastic structure which can be reversibly deformed by up to 1 µm. Large reversible deformations rule out an interface between substrate and cytoskeleton that is dominated by a number of stiff molecular springs in parallel, and favor a compliant cross-linked network. Such a compliant structure may increase the lifetime of a nascent adhesion, facilitating signaling and reinforcement.
    PLoS ONE 01/2013; 8(9):e73389. · 3.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We report a theoretical study on the cyclic stretch-induced reorientation of spindle-shaped cells. Specifically, by taking into account the evolution of sub-cellular structures like the contractile stress fibers and adhesive receptor-ligand clusters, we develop a mechanochemical model to describe the dynamics of cell realignment in response to cyclically stretched substrates. Our main hypothesis is that cells tend to orient in the direction where the formation of stress fibers is energetically most favorable. We show that, when subjected to cyclic stretch, the final alignment of cells reflects the competition between the elevated force within stress fibers that accelerates their disassembly and the disruption of cell-substrate adhesion as well, and an effectively increased substrate rigidity that promotes more stable focal adhesions. Our model predictions are consistent with various observations like the substrate rigidity dependent formation of stable adhesions and the stretching frequency, as well as stretching amplitude, dependence of cell realignment. This theory also provides a simple explanation on the regulation of protein Rho in the formation of stretch-induced stress fibers in cells.
    PLoS ONE 01/2013; 8(6):e65864. · 3.73 Impact Factor

Full-text (2 Sources)

Available from
Oct 2, 2013