Article

Lifetime and strength of periodic bond clusters between elastic media under inclined loading.

Division of Engineering, Brown University, Providence, Rhode Island, USA.
Biophysical Journal (Impact Factor: 3.67). 11/2009; 97(9):2438-45. DOI: 10.1016/j.bpj.2009.08.027
Source: PubMed

ABSTRACT Focal adhesions are clusters of specific receptor-ligand bonds that link an animal cell to an extracellular matrix. To understand the mechanical responses of focal adhesions, here we develop a stochastic-elasticity model of a periodic array of adhesion clusters between two dissimilar elastic media subjected to an inclined tensile stress, in which stochastic descriptions of molecular bonds and elastic descriptions of interfacial traction are unified in a single modeling framework. We first establish a fundamental scaling law of interfacial traction distribution and derive a stress concentration index that governs the transition between uniform and cracklike singular distributions of the interfacial traction within molecular bonds. Guided by this scaling law, we then perform Monte Carlo simulations to investigate the effects of cluster size, cell/extracellular matrix modulus, and loading direction on lifetime and strength of the adhesion clusters. The results show that intermediate adhesion size, stiff substrate, cytoskeleton stiffening, and low-angle pulling are factors that contribute to the stability of focal adhesions. The predictions of our model provide feasible explanations for a wide range of experimental observations and suggest possible mechanisms by which cells can modulate adhesion and deadhesion via cytoskeletal contractile machinery and sense mechanical properties of their surroundings.

1 Bookmark
 · 
90 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cells sense and respond to the elasticity of extracellular matrix (ECM) via integrin-mediated adhesion. As a class of well-documented mechanosenors in cells, integrins switch among inactive, bound, and dissociated states, depending upon the variation of forces acting on them. However, it remains unclear how the ECM elasticity directs and affects the states of integrins and, in turn, their cellular functions. On the basis of our recent experiments, a biomechanical model is proposed to reveal the role of ECM elasticity in the state-switching of integrins. It is demonstrated that a soft ECM can increase the activation level of integrins while a stiff ECM has a tendency to prevent the dissociation and internalization of bound integrins. In addition, it is found that more stable focal adhesions can form on stiffer and thinner ECMs. The theoretical results agree well with relevant experiments and shed light on the ECM elasticity-sensing mechanisms of cells.
    Journal of biomechanics 01/2014; · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We formulate a stochastic description about the mechanical response of an interface composed of non-covalent bonds. In such interfaces, the evolution of bonding probability in response to deformation plays the central role in determining their traction-separation behavior. The model connects atomistic and molecular level bonding properties to meso-scale traction-separation relationship in an interface. In response to quasi-static loading, the traction-separation of a stochastic interface is the resultant of varying bonding probability as a function of separation, and the bonding probability follows the Boltzmann distribution. The quasi-static stochastic interface model is applied to understand the critical force while detaching a sphere from an infinite half space. We further show the kinetics of interfacial debonding in the context of the Bell model (1978) and two of its derivatives – the Evans-Richie model (1997) and the Freund model (2009). While subjected to constant force, an interface creeps and its separation–time curve shows typical characteristics seen during the creep of crystalline materials at high temperature. When we exert constant separation rate to an interface, interfacial traction shows strong rate-sensitivity with higher traction at faster separation rate. The model presented here may supply a guidance to bring the stochastic nature of interfacial debonding into theories on cracking initiation and growth during fatigue fracture.
    Journal of the Mechanics and Physics of Solids 10/2014; 70. · 4.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over decades, the theoretical and applied mechanics community has developed sophisticated approaches for analysing the behaviour of complex engineering systems. Most of these approaches have targeted systems in the transportation, materials, defence and energy industries. Applying and further developing engineering approaches for understanding, predicting and modulating the response of complicated biomedical processes not only holds great promise in meeting societal needs, but also poses serious challenges. This report, prepared for the US National Committee on Theoretical and Applied Mechanics, aims to identify the most pressing challenges in biological sciences and medicine that can be tackled within the broad field of mechanics. This echoes and complements a number of national and international initiatives aiming at fostering interdisciplinary biomedical research. This report also comments on cultural/educational challenges. Specifically, this report focuses on three major thrusts in which we believe mechanics has and will continue to have a substantial impact. (i) Rationally engineering injectable nano/microdevices for imaging and therapy of disease. Within this context, we discuss nanoparticle carrier design, vascular transport and adhesion, endocytosis and tumour growth in response to therapy, as well as uncertainty quantification techniques to better connect models and experiments. (ii) Design of biomedical devices, including point-of-care diagnostic systems, model organ and multi-organ microdevices, and pulsatile ventricular assistant devices. (iii) Mechanics of cellular processes, including mechanosensing and mechanotransduction, improved characterization of cellular constitutive behaviour, and microfluidic systems for single-cell studies.
    Journal of the Royal Society, Interface / the Royal Society. 08/2014; 11(97).

Full-text (2 Sources)

Download
38 Downloads
Available from
May 22, 2014