Article

Microengineering of soft functional materials by controlling the fiber network formation.

Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542.
The Journal of Physical Chemistry B (Impact Factor: 3.61). 11/2009; 113(47):15467-72. DOI: 10.1021/jp907963t
Source: PubMed

ABSTRACT The engineering of soft functional materials based on the construction of three-dimensional interconnecting self-organized nanofiber networks is reported. The system under investigation is an organogel formed by N-lauroyl-L-glutamic acid di-n-butylamide (GP-1) in propylene glycol. The engineering of soft functional materials is implemented by controlling primary nucleation kinetics of GP-1, which can be achieved by both reducing thermodynamic driving force and/or introducing a tiny amount of specific copolymers (i.e., poly(methyl methacrylate comethacrylic acid)). The primary nucleation rate of GP-1 is correlated to the number density of GP-1 spherulites, which determines the overall rheological properties of soft functional materials. The results show that the presence of a tiny amount of the polymer (0.01-0.06%) can effectively inhibit the nucleation of GP-1 spherulites, which leads to the formation of integrated fiber networks. It follows that with the additive approach, the viscoelasticity of the soft functional material is significantly enhanced (i.e., more than 1.5 times at 40 degrees C). A combination of the thermal and additive approach led to an improvement of 3.5 times in the viscosity of the gel.

0 Bookmarks
 · 
51 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The self-assembly and gelating ability of a set of N-alkyl-(R)-12-hydroxyoctadecylammonium chlorides (NCl-n, where n = 0-6, 18 is the length of the alkyl chain on nitrogen) are described. Several are found to be ambidextrous (gelating both water and a variety of organic liquids) and very efficient (needing less than ca. 0.5 wt % at room temperature). Structure-property correlations at different distance scales of the NCl-n in their hydro- and organo-gels and neat, solid states have been made using X-ray diffraction, neutron scattering, thermal, optical, cryo-SEM and rheological techniques. The self-assembled fibrillar networks consist of spherulitic objects with fibers whose diameters and degrees of twisting differ in the hydro- and organo-gels. Increasing n (and, thus, the molecular length) increases the width of the fibers in their hydrogels; an irregular, less pronounced trend between n and fiber width is observed in the corresponding toluene gels. Time-dependent, small angle neutron scattering data for the isothermal sol-to-gel transformation of sols of NCl-18/toluene to their gels, treated according to Avrami theory, indicate heterogeneous nucleation involving rodlike growth. Rheological studies of gels of NCl-3 in water and toluene confirm their viscoelastic nature and show that the hydrogel is mechanically stronger than the toluene gel. Models for the different molecular packing arrangements within the fibrillar gel networks of the hydro- and organogels have been inferred from X-ray diffraction. The variations in the fibrillar networks provide a comprehensive picture and detailed insights into why seemingly very similar NCl-n behave very differently during their self-assembly processes in water and organic liquids. It is shown that the NCl-n provide a versatile platform for interrogating fundamental questions regarding the links between molecular structure and one-dimensional self-aggregation, leading to gelation.
    The Journal of Physical Chemistry B 11/2011; 115(43):12401-14. · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of amino- and hydroxyalkyl amides of bile acids have been synthesized and characterized by Fourier transform infrared spectroscopy (FTIR), (1)H and (13)C nuclear magnetic resonance spectroscopy (NMR), as well as electrospray ionization mass spectrometry (ESI-MS) measurements. The ability of the synthesized molecules to promote gel formation was systematically investigated. Out of 396 combinations formed by 11 compounds and 36 different solvents, 22 gel-containing systems were obtained with 1% (w/v) gelator concentration. Apart from one exception, the gelator compounds were lithocholic acid derivatives. This challenges the general trend of bile acid-based physical gelators, according to which the gelation ability of lithocholic acid derivatives is poor. A correlation between the values of Kamlet-Taft parameters and solvent preferences for gelators was observed. The morphologies of the solid and gel structures studied with scanning electron microscopy (SEM) showed variability from fibers to spherical microscale aggregates, the latter of which are unique among bile acid-based organogels. The gels exhibited more complex behavior than was previously established with bile acid derivatives, judging by the microscale diversity present in gelating and non-gelating systems and the tendency for polymorphism. This study underlines the importance of both the molecular and colloidal scale aspects of the gelation phenomenon.
    Journal of Colloid and Interface Science 08/2011; 360(2):633-44. · 3.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the role of kinetics in fiber network microstructure formation is of considerable importance in engineering gel materials to achieve their optimized performances/functionalities. In this work, we present a new approach for kinetic-structure analysis for fibrous gel materials. In this method, kinetic data is acquired using a rheology technique and is analyzed in terms of an extended Dickinson model in which the scaling behaviors of dynamic rheological properties in the gelation process are taken into account. It enables us to extract the structural parameter, i.e. the fractal dimension, of a fibrous gel from the dynamic rheological measurement of the gelation process, and to establish the kinetic-structure relationship suitable for both dilute and concentrated gelling systems. In comparison to the fractal analysis method reported in a previous study, our method is advantageous due to its general validity for a wide range of fractal structures of fibrous gels, from a highly compact network of the spherulitic domains to an open fibrous network structure. With such a kinetic-structure analysis, we can gain a quantitative understanding of the role of kinetic control in engineering the microstructure of the fiber network in gel materials.
    Physical Chemistry Chemical Physics 01/2013; · 3.83 Impact Factor