Article

Whole-body vibration as potential intervention for people with low bone mineral density and osteoporosis: a review.

Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada.
The Journal of Rehabilitation Research and Development (Impact Factor: 1.69). 01/2009; 46(4):529-42. DOI: 10.1682/JRRD.2008.09.0136
Source: PubMed

ABSTRACT Low bone mineral density (BMD) and osteoporosis are health concerns among older adults and individuals with physical, neurological, and/or mobility impairments. Detrimental changes in bone density and bone architecture occurring in these individuals may be due in part to the reduction/cessation of physical activity and the accompanying reduction of mechanical strain on bone. Changes in bone architecture predispose these individuals to fragility fractures during low-trauma events. Whole-body vibration (WBV) has been examined as an intervention for maintaining or improving bone mass among people with low BMD, because it may emulate the mechanical strains observed during normal daily activities. This article provides an overview of WBV including terminology, safety considerations, and a summary of the current literature; it is intended for rehabilitation healthcare providers considering WBV as a potential therapy for individuals with osteoporosis.

0 Followers
 · 
126 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole body vibration (WBV) is increasingly being used to improve balance and motor function and reduce the secondary complications associated with cerebral palsy (CP). The purpose of this study was to systematically appraise published research regarding the effects of static and/or dynamic exercise performed on a vibrating platform on gait, strength, spasticity and bone mineral density (BMD) within this population. Systematic searches of six electronic databases identified five studies that met our inclusion criteria (2 at Level II and 3 at Level III-2). Studies were analysed to determine: (a) participant characteristics; (b) optimal exercise and WBV treatment protocol; (c) effect on gait, strength, spasticity and BMD; and (d) the outcome measures used to evaluate effect. As data was not homogenous a meta-analysis was not possible. Several design limitations were identified and intervention protocols are poorly described. The effects on strength, gait, spasticity and BMD in persons with CP remain inconclusive with weak evidence that WBV may improve selected muscle strength and gait parameters and that prolonged exposure may improve BMD; there is currently no evidence that WBV can reduce spasticity. The evidence for exercise performed on a vibrating platform on mobility, strength, spasticity and BMD in CP remains scant and further larger scale investigations with controlled parameters to better understand the effects of WBV exercises in this population is recommended.
    Developmental neurorehabilitation 03/2015; DOI:10.3109/17518423.2014.994713 · 1.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Whole body vibration has been studied in populations experiencing neuromuscular degradation, including the elderly and individuals with neurological disorders, but methodological standardization is required to clarify its therapeutic effects. The characteristics of the vibrations actually delivered by commercial platforms are rarely measured or reported. Our objective was to quantify the vibrations (frequency, amplitude and peak acceleration) produced by several commercial platforms across different settings. Methods: Laser and accelerometer recordings were used to measure the vibrations of 7 vibration platforms. Four loads (0 kg, 45 kg, 68 kg, 91 kg) and 3 vibration frequencies were used (30 Hz, 40 Hz, 50 Hz), totaling 12 combinations. Results: In all platforms, vibration amplitude and peak acceleration varied as a function of the load used (p < 0.001 in all cases). In most platforms, the actual frequency of vibration differed from the intended frequency (actual/intended ratio ranging from 0.83 to 1.19), as a function of load and frequency. These results imply that subjects of different weights could be receiving different vibrations. Conclusion: Investigators should characterize and report the vibrations actually delivered in their studies, in order to increase the quality of evidence in whole body vibration studies.
    Journal of Rehabilitation Medicine 08/2014; 46(9). DOI:10.2340/16501977-1868 · 1.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rheumatoid arthritis (RA) is a chronic autoimmune condition that results in pain and disability. Patients with RA have a decreased functional ability and are forced into a sedentary lifestyle and as such, these patients often become predisposed to poor bone health. Patients with RA may also experience a decreased health related quality of life (HRQoL) due to their disease. Whole body vibration (WBV) is a form of exercise that stimulates bone loading through forced oscillation. WBV has also been shown to decrease pain and fatigue in other rheumatic diseases, as well as to increase muscle strength. This paper reports on the development of a semi randomised controlled clinical trial to assess the impact of a WBV intervention aiming to improve functional ability, attenuate bone loss, and improve habitual physical activity levels in patients with RA.Methods and design: This study is a semi randomised, controlled trial consisting of a cohort of patients with established RA assigned to either a WBV group or a CON (control) group. Patients in the WBV group will undergo three months of twice weekly intermittent WBV sessions, while the CON group will receive standard care and continue with normal daily activities. All patients will be assessed at baseline, following the three month intervention, and six months post intervention. Main outcomes will be an improvement in functional ability as assessed by the HAQ. Secondary outcomes are attenuation of loss of bone mineral density (BMD) at the hip and changes in RA disease activity, HRQoL, habitual physical activity levels and body composition. This study will provide important information regarding the effects of WBV on functional ability and BMD in patients with RA, as well as novel data regarding the potential changes in objective habitual physical activity patterns that may occur following the intervention. The sustainability of the intervention will also be assessed.Trial registration: PACTR201405000823418 (19/05/2014).
    BMC Musculoskeletal Disorders 11/2014; 15(1):403. DOI:10.1186/1471-2474-15-403 · 1.90 Impact Factor

Full-text (2 Sources)

Download
57 Downloads
Available from
Jun 4, 2014