Pearson Syndrome in the Neonatal Period

AP-HP, Hôpital Armand Trousseau, Department of Pediatric Hematology Oncology and Université Pierre et Marie Curie, Paris, France.
Journal of Pediatric Hematology/Oncology (Impact Factor: 0.9). 10/2009; 31(12):947-51. DOI: 10.1097/MPH.0b013e3181bbc4ef
Source: PubMed


Pearson syndrome is a multiorgan mitochondrial cytopathy that results from defective oxidative phosphorylation owing to mitochondrial DNA deletions. Prognosis is severe and death occurs in infancy or early childhood. This article describes 2 cases with a severe neonatal onset of the disease. A review of the literature reveals the atypical presentation of the disease in the neonatal period, which is often overlooked and underdiagnosed.

24 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: To study the prevalence and prognostic importance of mutations in NADH dehydrogenase subunit 4 (ND4), a mitochondrial encoded transmembrane component of the electron transport chain respiratory Complex I, 452 AML patients were examined for ND4 mutations by direct sequencing. The prognostic impact of ND4 mutations was evaluated in the context of other clinical prognostic markers and genetic risk factors. In all, 29 of 452 patients (6.4%) had either somatic (n=12) or germline (n=17) ND4 mutations predicted to affect translation. Somatic mutations were more likely to be heteroplasmic (P<0.001), to occur in predicted transmembrane domains (P<0.001) and were predicted to have damaging effects upon translation (P<0.001). Patients with somatically acquired ND4 mutations had significantly longer relapse-free survival (P=0.017) and overall survival (OS) (P=0.021) than ND4(wildtype) patients. Multivariate analysis also demonstrated a tendency for increased survival in patients with somatic ND4 mutations (RFS: hazard ratio (HR) 0.25, confidence interval (CI) 0.06-1.01, P=0.052; OS: HR 0.29, CI 0.74-1.20, P=0.089). Somatic ND4(mutated) patients had a higher prevalence of concomitant DNMT3A mutations (P=0.023) and a higher percentage of the NPM1/FLT3-ITD low-risk genotype (P=0.021). Germline affected cases showed higher BAALC (P=0.036) and MLL5 (P=0.051) expression levels. Further studies are warranted to validate the favorable prognostic influence of acquired ND4 mutations in AML.
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 08/2011; 26(2):289-95. DOI:10.1038/leu.2011.200 · 10.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Among the etiologies of anemia in the infancy, the mitochondrial cytopathies are infrequent. Pearson syndrome is diagnosed principally during the initial stages of life and it is characterized by refractory sideroblastic anemia with vacuolization of marrow progenitor cells, exocrine pancreatic dysfunction and variable neurologic, hepatic, renal and endocrine failures. We report the case of a 14 month-old girl evaluated by a multicentric study, with clinic and molecular diagnosis of Pearson syndrome, with the 4,977-base pair common deletion of mitochondrial DNA. This entity has been associated to diverse phenotypes within the broad clinical spectrum of mitochondrial disease.
    Investigación clínica 09/2011; 52(3):261-7. · 0.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pearson syndrome is a very rare metabolic disorder that is usually present in infancy with transfusion dependent macrocytic anemia and multiorgan involvement including exocrine pancreas, liver and renal tubular defects. The disease is secondary to a mitochondrial DNA deletion that is variable in size and location. Endocrine abnormalities can develop, but are usually not part of the initial presentation. We report two patients who presented with unusual endocrine manifestations, neonatal diabetes and adrenal insufficiency, who were both later diagnosed with Pearson syndrome. Medical records were reviewed. Confirmatory testing included: mitochondrial DNA deletion testing and sequencing of the breakpoints, muscle biopsy, and bone marrow studies. Case 1 presented with hyperglycemia requiring insulin at birth. She had several episodes of ketoacidosis triggered by stress and labile blood glucose control. Workup for genetic causes of neonatal diabetes was negative. She had transfusion dependent anemia and died at 24 months due to multisystem organ failure. Case 2 presented with adrenal insufficiency and anemia during inturcurrent illness, requiring steroid replacement since 37 months of age. He is currently 4 years old and has mild anemia. Mitochondrial DNA studies confirmed a 4.9 kb deletion in patient 1 and a 5.1 kb deletion in patient 2. The patients reported highlight the importance of considering mitochondrial DNA disorders in patients with early onset endocrine dysfunction, and expand the knowledge about this rare mitochondrial disease.
    Molecular Genetics and Metabolism 01/2012; 106(1):104-7. DOI:10.1016/j.ymgme.2012.01.018 · 2.63 Impact Factor
Show more

Similar Publications