Article

The critical role of the cellular thiol homeostasis in cadmium perturbation of the lung extracellular matrix.

Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
Toxicology (Impact Factor: 3.75). 10/2009; 267(1-3):60-9. DOI: 10.1016/j.tox.2009.10.021
Source: PubMed

ABSTRACT Cadmium (Cd) inhalation can result in emphysema. Cd exposure of rat lung fibroblasts (RFL6) enhanced levels of metal scavenging thiols, e.g., metallothionein (MT) and glutathione (GSH), and the heavy chain of gamma-glutamylcysteine synthetase (gamma-GCS), a key enzyme for GSH biosynthesis, concomitant with downregulation of lysyl oxidase (LO), a copper-dependent enzyme for crosslinking collagen and elastin in the extracellular matrix (ECM). Cd downregulation of LO in treated cells was closely accompanied by suppression of synthesis of collagen, a major structure component of the lung ECM. Using rats intratracheally instilled with cadmium chloride (30 microg, once a week) as an animal model, we further demonstrated that although 2-week Cd instillation induced a non-significant change in the lung LO activity and collagen synthesis, 4- and 6-week Cd instillation resulted in a steady decrease in the lung LO and collagen expression. The lung MT and total GSH levels were both upregulated upon the long-term Cd exposure. Emphysematous lesions were generated in lungs of 6-week Cd-dosed rats. Increases of cellular thiols by transfection of cells with MT-II expression vectors or treatment of cells with GSH monoethyl ester, a GSH delivery system, markedly inhibited LO mRNA levels and catalytic activities in the cell model. Thus, Cd upregulation of cellular thiols may be a critical cellular event facilitating downregulation of LO, a potential mechanism for Cd-induced emphysema.

0 Bookmarks
 · 
88 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lysyl oxidase (LO) catalyzes crosslink of collagen, elastin and histone H1 stabilizing the extracellular matrix and cell nucleus. This enzyme displays dual functions for tumorigenesis, i.e., as a tumor suppressor inactivating the ras oncogene as well as a tumor promoter enhancing malignant cell metastasis. To elucidate LO transcriptional regulation, we have cloned the 804 base pair region upstream of the translation start site (ATG) of the rat LO gene with the maximal promoter activity. Computer analysis indicated that at least 4 hypoxia-response element (HRE) consensuses (5'-ACGTG-3') exist in the cloned LO promoter. Treatment of rat lung fibroblasts (RFL6) with CoCl(2) (Co, 10-100 μM), a chemical hypoxia reagent, enhanced LO mRNA expression and promoter activities. Overexpression of LO was associated with upregulation of hypoxia inducible factor (HIF)-1α at mRNA levels in Co-treated cells. Thus, LO is a hypoxia-responsive gene. Dominant negative (DN)-HIF-1α, inhibited LO promoter activities stimulated by Co. Electrophoretic mobility shift, oligonucleotide competition and in vitro translated HIF-1α binding assays indicated that only one HRE mapped at -387/-383 relative to ATG was functionally active among 4 consensuses. Site-directed mutation of this HRE significantly diminished the Co-induced and LO promoter-directed expression of the reporter gene. Cadmium (Cd), an inducer of reactive oxygen species (ROS), inhibited HIF-1α mRNA expression and HIF-1α binding to the LO gene in Co-treated cells as revealed by RT-PCR and ChIP assays, respectively. Thus, modulation of the HRE activity by Co and Cd plays a critical role in LO gene transactivation.
    Toxicological Sciences 11/2012; · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor invasion and migration are major causes of mortality in patients with cervical carcinoma. Tumors under hypoxic conditions are more invasive and have a higher metastasic activity. Lysyl oxidase (LOX) is a hypoxia-responsive gene. LOX has been shown to be essential for hypoxia-induced metastasis in breast cancer. However, the direct impact of LOX on cervical cancer cell motility remains poorly understood. Our study revealed that LOX expression at protein and catalytic levels is upregulated in cervical cancer cells upon exposure to hypoxia. Hypoxia induced mesenchymal-like morphological changes in HeLa and SiHa cells which were accompanied by upregulation of α-SMA and vimentin, two mesenchymal markers, and downregulation of E-cadherin, an epithelial marker, indicating the epithelial-mesenchymal transition (EMT) of cervical cancer cells occurred under hypoxic conditions. Treatment of tumor cells with β-aminopropionitrile (BAPN), an active site inhibitor of LOX, blocked the hypoxia-induced EMT morphological and marker protein changes, and inhibited invasion and migration capacities of cervical carcinoma cells in vitro. Collectively, these findings suggest LOX enhances hypoxia-induced invasion and migration in cervical cancer cells mediated by the EMT which can be inhibited by BAPN.
    Oncology Reports 11/2012; · 2.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The paper presents the development of an advanced extraction and fast analytical LC MS/MS method for simultaneous analyses of reduced and oxidized glutathione (GSH and GSSG, respectively) in different animal tissues. The simultaneous determination of GSH and GSSG is crucial because the amount and ratio of both GSH and GSSG may be altered in response to oxidative stress, an important mechanism of toxicity. The method uses the derivatization of free thiol groups in GSH. Its performance was demonstrated for less explored tissues (lung, brain, and liver) in mouse. The combined extraction and analytical method has very low variability and good reproducibility, maximum coefficients of variance for within-run and between-run analyses under 8 %, and low limits of quantification; for GSH and GSSG, these were 0.2 nM (0.06 ng/mL) and 10 nM (6 ng/mL), respectively. The performance of the method was further demonstrated in a model experiment addressing changes in GSH and GSSG concentrations in lung of mice exposed to CdO nanoparticles during acute 72 h and chronic 13-week exposures. Inhalation exposure led to increased GSH concentrations in lung. GSSG levels were in general not affected; nonsignificant suppression occurred only after the longer 13-week period of exposure. The developed method for the sensitive detection of both GSH and GSSG in very low tissue mass enables these parameters to be studied in cases where only a little sample is available, i.e. in small organisms or in small amounts of tissue.
    Analytical and Bioanalytical Chemistry 07/2014; · 3.58 Impact Factor

Preview

Download
0 Downloads
Available from