Convergent evolution of novel protein function in shrew and lizard venom.

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
Current biology: CB (Impact Factor: 10.99). 10/2009; 19(22):1925-31. DOI: 10.1016/j.cub.2009.09.022
Source: PubMed

ABSTRACT How do proteins evolve novel functions? To address this question, we are studying the evolution of a mammalian toxin, the serine protease BLTX [1], from the salivary glands of the North American shrew Blarina brevicauda. Here, we examine the molecular changes responsible for promoting BLTX toxicity. First, we show that regulatory loops surrounding the BLTX active site have evolved adaptively via acquisition of small insertions and subsequent accelerated sequence evolution. Second, these mutations introduce a novel chemical environment into the catalytic cleft of BLTX. Third, molecular-dynamic simulations show that the observed changes create a novel chemical and physical topology consistent with increased enzyme catalysis. Finally, we show that a toxic serine protease from the Mexican beaded lizard (GTX) [2] has evolved convergently through almost identical functional changes. Together, these results suggest that the evolution of toxicity might be predictable-arising via adaptive structural modification of analogous labile regulatory loops of an ancestral serine protease-and thus might aid in the identification of other toxic proteins.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Le venin administré avec les dents est un caractère relativement rare chez les vertébrés. Le caractère semble être hautement adaptif pour la capture de proie ou la défense ; il a été considéré comme une innovation majeure qui a conduit à la diversification des serpents venimeux. Chez les mammifères modernes, le venin oral n’est connu que chez quatre espèces d’Eulipotyphla (qui comprend les solénodontes ou almiquis, les musaraignes, les taupes et les hérissons). La distribution phylogénétique de venin chez les mammifères modernes suggère que l’acquisition de venin a évolué de façon indépendante, trois fois, chez les eulipotyphles. Chez les musaraignes, les dents rainurées ne sont pas associées à la présence de venin, et seul la solénodonte comporte à la fois des dents cannelées et de la salive venimeuse. Compte tenu de ces données, les inférences récentes de capacités venimeuses chez des eulipotyphles éteints sur la base de la présence de dents cannelées ne sont pas justifiées.
    Comptes Rendus Palevol 11/2013; · 1.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Animal venoms have evolved many times. Venomous species are especially common in three of the four main groups of arthropods (Chelicerata, Myriapoda, Hexapoda), which together represent tens of thousands of species of venomous spiders, scorpions, centipedes and hymenopterans. Surprisingly, despite their great diversity of body plans there is no unambiguous evidence that any crustacean is venomous. We provide the first conclusive evidence that the aquatic, blind and cave-dwelling remipede crustaceans are venomous, and that venoms evolved in all four major arthropod groups. We produced a three-dimensional reconstruction of the venom delivery apparatus of the remipede Speleonectes tulumensis, showing that remipedes can inject venom in a controlled manner. A transcriptomic profile of its venom glands shows that they express a unique cocktail of transcripts coding for known venom toxins, including a diversity of enzymes and a probable paralytic neurotoxin very similar to one described from spider venom. We screened a transcriptomic library obtained from whole animals and identified a non-toxin paralogue of the remipede neurotoxin that is not expressed in the venom glands. This allowed us to reconstruct its probable evolutionary origin, and underlines the importance of incorporating data derived from non-venom gland tissue to elucidate the evolution of candidate venom proteins. This first glimpse into the venom of a crustacean and primitively aquatic arthropod reveals conspicuous differences from the venoms of other predatory arthropods such as centipedes, scorpions and spiders, and contributes valuable information for ultimately disentangling the many factors shaping the biology and evolution of venoms and venomous species.
    Molecular Biology and Evolution 10/2013; · 14.31 Impact Factor
  • Lab Animal 10/2013; 42(11):405-6. · 0.47 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014