Regulation of Clusterin Activity by Calcium

Department of Cell Ultrastructure, Mossakowski Medical Research Center, Polish Academy of Sciences, 02-106 Warsaw, Poland.
Advances in Cancer Research (Impact Factor: 4.26). 01/2009; 104:33-58. DOI: 10.1016/S0065-230X(09)04004-4
Source: PubMed

ABSTRACT In this chapter, the attention is put on Ca(2+) effect on Clusterin (CLU) activity. We showed that two CLU forms (secreted and nuclear) are differently regulated by Ca(2+) and that Ca(2+) fluxes affect CLU gene expression. A secretory form (sCLU) protects cell viability whereas nuclear form (nCLU) is proapoptotic. Based on available data we suggest, that different CLU forms play opposite roles, depending on intracellular Ca(2+) concentration, time-course of Ca(2+) current, intracellular Ca(2+) compartmentalization, and final Ca(2+) targets. Discussion will be motivated on how CLU acts on cell in response to Ca(2+) waves. The impact of Ca(2+) on CLU gene activity and transcription, posttranscriptional modifications, translation of CLU mRNA, and posttranslational changes as well as biological effects of CLU will be discussed. We will also examine how Ca(2+) signal and Ca(2+)-dependent proteins are attributable to changes in CLU characteristics. Some elucidation of CLU gene activity, CLU protein formation, maturation, secretion, and intracellular translocations in response to Ca(2+) is presented. In response to cell stress (i.e., DNA damage) CLU gene is activated. We assume that commonly upregulated mRNA for nCLU versus sCLU and vice versa are dependent on Ca(2+) accessibility and its intracellular distribution. It looks as if at low intracellular Ca(2+) the delay in cell cycle allows more time for DNA repair; otherwise, cells undergo nCLU-dependent apoptosis. If cells are about to survive, intrinsic apoptosis is abrogated by sCLU interacting with activated Bax. In conclusion, a narrow range of intracellular Ca(2+) concentrations is responsible for the decision whether nCLU is mobilized (apoptosis) or sCLU is appointed to improve survival. Since the discovery of CLU, a huge research progress has been done. Nonetheless we feel that much work is left ahead before remaining uncertainties related to Ca(2+) signal and the respective roles of CLU proteins are unraveled.

Download full-text


Available from: Arkadiusz Orzechowski, Dec 10, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a basic catabolic process, serving as an internal engine during responses to various cellular stresses. As regards cancer, autophagy may play a tumor suppressive role by preserving cellular integrity during tumor development and by possible contribution to cell death. However, autophagy may also exert oncogenic effects by promoting tumor cell survival and preventing cell death, for example, upon anticancer treatment. The major factors influencing autophagy are Ca 2+ homeostasis perturbation and starvation. Several Ca 2+ channels like voltage-gated T-and L-type channels, IP3 receptors, or CRAC are involved in autophagy regulation. Glucose transporters, mainly from GLUT family, which are often upregulated in cancer, are also prominent targets for autophagy induction. Signals from both Ca 2+ perturbations and glucose transport blockage might be integrated at UPR and ER stress activation. Molecular pathways such as IRE 1-JNK-Bcl-2, PERK-eIF2í µí»¼-ATF4, or ATF6-XBP 1-ATG are related to autophagy induced through ER stress. Moreover ER molecular chaperones such as GRP78/BiP and transcription factors like CHOP participate in regulation of ER stress-mediated autophagy. Autophagy modulation might be promising in anticancer therapies; however, it is a context-dependent matter whether inhibition or activation of autophagy leads to tumor cell death.
    BioMed Research International 11/2014; 2015(Article ID 352794):12 pages. DOI:10.1155/2015/352794 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrated that glyphosate possesses tumor promoting potential in mouse skin carcinogenesis and SOD 1, calcyclin (S100A6), and calgranulin B (S100A9) have been associated with this potential, although the mechanism is unclear. We aimed to clarify whether imbalance in between [Ca(2+)] i levels and oxidative stress is associated with glyphosate-induced proliferation in human keratinocytes HaCaT cells. The [Ca(2+)] i levels, ROS generation, and expressions of G1/S cyclins, IP3R1, S100A6, S100A9, and SOD 1, and apoptosis-related proteins were investigated upon glyphosate exposure in HaCaT cells. Glyphosate (0.1 mM) significantly induced proliferation, decreases [Ca(2+)] i , and increases ROS generation in HaCaT cells, whereas antioxidant N-acetyl-L-cysteine (NAC) pretreatment reverts these effects which directly indicated that glyphosate induced cell proliferation by lowering [Ca(2+)] i levels via ROS generation. Glyphosate also enhanced the expression of G1/S cyclins associated with a sharp decrease in G0/G1 and a corresponding increase in S-phases. Additionally, glyphosate also triggers S100A6/S100A9 expression and decreases IP3R1 and SOD 1 expressions in HaCaT cells. Notably, Ca(2+) suppression also prevented apoptotic related events including Bax/Bcl-2 ratio and caspases activation. This study highlights that glyphosate promotes proliferation in HaCaT cells probably by disrupting the balance in between [Ca(2+)] i levels and oxidative stress which in turn facilitated the downregulation of mitochondrial apoptotic signaling pathways.
    08/2013; 2013:825180. DOI:10.1155/2013/825180
  • [Show abstract] [Hide abstract]
    ABSTRACT: Somatotroph adenomas secrete supraphysiological amounts of growth hormone, causing acromegaly. We have previously hypothesized that epithelial mesenchymal transition (EMT) may play a central role in the progression of these adenomas and that epithelial splicing regulator 1 (ESRP1) may function prominently as a master regulator of the EMT process in pituitary adenomas causing acromegaly. To further elucidate the role of ESRP1 in somatotroph adenomas and in EMT progression, we used RNAseq to sequence somatotroph adenomas characterized by high and low ESRP1 levels. Transcripts identified by RNAseq were analyzed in 65 somatotroph adenomas and in growth hormone-producing pituitary rat cells with a specific knockdown of Esrp1. The clinical importance of the transcripts was further investigated by correlating mRNA expression levels with clinical indices of disease activity and treatment response. Many of the transcripts and isoforms identified by RNAseq and verified by quantitative polymerase chain reaction (qPCR) were involved in vesicle transport and calcium signaling and were associated with clinical outcomes. Silencing Esrp1 in GH3 cells resulted in changes of gene expression overlapping the data observed in human somatotroph adenomas and revealed a decreased granulation pattern and attenuated GH release. We observed an alternative splicing pattern for FBXL20 depending on the ESPR1 levels and on changes in circulating insulin growth factor 1 levels following somatostatin analog treatment. Our study indicates that ESRP1 in somatotroph adenomas regulates transcripts that may be essential in EMT progression and in the response to somatostatin analog (SA) treatment.
    Endocrinology 07/2013; 154(9). DOI:10.1210/en.2013-1051 · 4.64 Impact Factor

Similar Publications