Feeding signals and brain circuitry

Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
European Journal of Neuroscience (Impact Factor: 3.67). 10/2009; 30(9):1688-96. DOI: 10.1111/j.1460-9568.2009.06963.x
Source: PubMed

ABSTRACT Food intake is a major physiological function in animals and must be entrained to the circadian oscillations in food availability. In the last two decades a growing number of reports have shed light on the hormonal, cellular and molecular mechanisms involved in the regulation of food intake. Brain areas located in the hypothalamus have been shown to play a pivotal role in the regulation of energy metabolism, controlling energy balance. In these areas, neuronal plasticity has been reported that is dependent upon key hormones, such as leptin and ghrelin, that are produced by peripheral organs. This review will provide an overview of recent discoveries relevant to understanding these issues.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are key organelles in the maintenance of cellular energy metabolism and integrity. Here, we show that mitochondria number decrease but their size increase in orexigenic agouti-related protein (Agrp) neurons during the transition from fasted to fed to overfed state. These fusion-like dynamic changes were cell-type specific, as they occurred in the opposite direction in anorexigenic pro-opiomelanocortin (POMC) neurons. Interfering with mitochondrial fusion mechanisms in Agrp neurons by cell-selectively knocking down mitofusin 1 (Mfn1) or mitofusin 2 (Mfn2) resulted in altered mitochondria size and density in these cells. Deficiency in mitofusins impaired the electric activity of Agrp neurons during high-fat diet (HFD), an event reversed by cell-selective administration of ATP. Agrp-specific Mfn1 or Mfn2 knockout mice gained less weight when fed a HFD due to decreased fat mass. Overall, our data unmask an important role for mitochondrial dynamics governed by Mfn1 and Mfn2 in Agrp neurons in central regulation of whole-body energy metabolism.
    Cell 09/2013; 155(1):188-99. DOI:10.1016/j.cell.2013.09.004 · 33.12 Impact Factor
  • Source
    Dataset: EJN2009-30a
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ventromedial nucleus of the hypothalamus (VMH) is a key cell group in the medial-basal hypothalamus that participates in the regulation of energy balance. Previous studies have shown that the cellular organization of the VMH is altered in mice with a disruption of the steroidogenic factor-1 (NR5a1) gene (SF-1 KO mice). The present study examined orexigenic/anorexigenic peptides (neuropeptide Y (NPY), agouti-related peptide (AgRP) and cocaine- and amphetamine-regulated transcript (CART)) and neural connections to and from the VMH in SF1 KO mice. NeuroVue tracing and Golgi staining were used to evaluate connections between the preoptic area (POA) and VMH and the orientation of dendrites in the VMH, respectively. Results of this study reveal changes in the cytoarchitecture of the region of the VMH with respect to the distribution of immunoreactive NPY, AgRP and CART. In WT mice projections from the POA normally surround the VMH while in SF-1 KO mice, projections from the POA stream through the region that would otherwise be VMH. Golgi impregnation of the region revealed fewer dendrites with ventrolateral orientations and in general, more variable dendritic orientations in SF-1 KO mice providing additional evidence that the connectivity of cells in the region is likely altered due to the cellular rearrangements consequent to disruption of the NR5a1 gene. In conclusion, this study greatly extends the data showing that the morphology of the regions containing the VMH is disrupted in SF-1 KO mice and suggests that changes in the location of cells or fibers containing NPY, AgRP and CART may, in part, account for changes in body weight homeostasis in these mice.
    Experimental Neurology 08/2011; 232(2):176-84. DOI:10.1016/j.expneurol.2011.08.021 · 4.62 Impact Factor