The Infrapatellar Fat Pad in Knee Osteoarthritis An Important Source of Interleukin-6 and Its Soluble Receptor

INSERM UMR-S 747, Université Paris Descartes, Paris, France.
Arthritis & Rheumatology (Impact Factor: 7.87). 11/2009; 60(11):3374-7. DOI: 10.1002/art.24881
Source: PubMed

ABSTRACT Obesity is a potent risk factor in knee osteoarthritis (OA). It has been suggested that adipokines, secreted by adipose tissue (AT) and largely found in the synovial fluid of OA patients, derive in part from the infrapatellar fat pad (IFP), also known as Hoffa's fat pad. The goal of this study was to characterize IFP tissue in obese OA patients and to compare its features with thigh subcutaneous AT to determine whether the IFP contributes to local inflammation in knee OA via production of specific cytokines.
IFP and subcutaneous AT samples were obtained from 11 obese women (body mass index > or =30 kg/m2) with knee femorotibial OA. Gene expression was measured by real-time quantitative polymerase chain reaction. Cytokine concentrations in plasma and in conditioned media of cultured AT explants were determined by enzyme-linked immunosorbent assay or by Luminex xMAP technology.
In IFP tissue versus subcutaneous AT, there was a decrease in the expression of genes for key enzymes implicated in adipocyte lipid metabolism, whereas the expression levels of genes for AT markers remained similar. A 2-fold increase in the expression of the gene for interleukin-6 (IL-6), a 2-fold increase in the release of IL-6, and a 3.6-fold increase in the release of soluble IL-6 receptor (sIL-6R) were observed in IFP samples, compared with subcutaneous AT, but the rates of secretion of other cytokines in IFP samples were similar to the rates in subcutaneous AT. In addition, leptin secretion was decreased by 40%, whereas adiponectin secretion was increased by 70%, in IFP samples versus subcutaneous AT.
Our results indicate that the IFP cytokine profile typically found in OA patients could play a role in paracrine inflammation via the local production of IL-6/sIL-6R and that such a profile might contribute to damage in adjacent cartilage.

Download full-text


Available from: Xavier Chevalier, May 26, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The thickness of epicardial adipose tissue (EAT), which is an inflammatory source for coronary artery disease (CAD), correlates with insulin resistance. One trigger factor is impaired adipogenesis. Here, our aim was to clarify the underlying mechanisms of insulin resistance on EAT-mesenchymal cells (MC). EAT and subcutaneous adipose tissue (SAT) were collected from 19 patients who were undergoing heart surgery. Their dedifferentiated adipocytes (DAs) and/or MCs were cultured. After the induction of adipogenesis or stimulation with insulin, the expression of adipokines was analyzed using real-time polymerase chain reaction (PCR). Colorimetric assays were performed to measure glucose levels and proliferation rate. Proteins modifications were detected via the proteomic approach and Western blot. Our results showed lower adipogenic ability in EAT-MCs than in SAT-MCs. Maximum adiponectin levels were reached within 28–35 days of exposure to adipogenic inducers. Moreover, the adipogenesis profile in EAT-MCs was dependent on the patients' clinical characteristics. The low adipogenic ability of EAT-MCs might be associated with an insulin-resistant state because chronic insulin treatment reduced the inflammatory cytokine expression levels, improved the glucose consumption, and increased the post-translational modifications (PTMs) of the glycolytic enzyme phosphoglycerate mutase 1 (PGAM1). We found lower adipogenic ability in EAT-MCs than in SAT-MCs. This lower ability level was dependent on gender and the presence of diabetes, obesity, and CAD. Low adipogenesis ability and insulin resistance in EAT-MCs might shed light on the association between EAT dysfunction and cardiovascular disease. J. Cell. Physiol. © 2014 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 11/2014; 229(11). DOI:10.1002/jcp.24619 · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity and adipose tissue contribute to local and systemic inflammation. However the role of the inflammatory mediator bradykinin (BK) in this context is not known. We therefore evaluated the effect of BK on adipokines secretion in human preadipocytes during the course of differentiation and characterized the receptors involved. Results obtained from antibody array and ELISA experiments showed that several adipokines are released by human preadipocytes under basal conditions while BK specifically stimulated the production of interleukin(IL)-6 and IL-8. The effect of BK diminished with the progression of differentiation, being almost inactive on adipocytes. In preadipocytes, BK also induced a rapid and transient [Ca(2+)]i mobilization, a rapid and sustained increase in ERK1/2 activation and enhanced forskolin-stimulated cAMP accumulation. BK was without effect on cell proliferation and viability as assessed by bromodeoxyuridine incorporation, WST-1 conversion, or lactate dehydrogenase leakage and was without effect on adipogenesis as measured by triglyceride accumulation, GPDH activity and leptin release. The B1 receptor agonist, Lys-[des-Arg(9)]-BK, displayed poor activity or was without effect while overall BK effects were prevented by the selective B2 receptor antagonist, fasitibant chloride, but not by the B1 selective antagonist, Lys-[Leu(8)][des-Arg(9)]-BK. Immunoblot analysis and immunofluorescence studies showed that the kinin B2 receptor was essentially expressed at the beginning of the differentiation program. In conclusion, human preadipocytes expressed kinin B2 receptors linked to multiple signaling pathways, IL-6 and IL-8 production, and BK proinflammatory response in adipose tissue could be prevented by fasitibant chloride.
    Biochemical pharmacology 06/2013; DOI:10.1016/j.bcp.2013.06.005 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is one of the primary risk factors for osteoarthritis. Increased adiposity is associated not only with alterations in joint loading, but also with increased systemic and joint concentrations of adipose tissue-derived cytokines, or "adipokines", that promote a state of chronic, low-grade inflammation that may act in concert with other cytokines in the joint to increase joint degeneration. However, the direct effect of adipokines, such as leptin, visfatin, and interleukin-6 (IL-6), on joint tissues, such as articular cartilage and meniscus, are not fully understood. In this study, we examined the hypothesis that these adipokines act synergistically with interleukin-1 (IL-1) to increase catabolism and the production of proinflammatory mediators in cartilage and meniscus. Explants of porcine cartilage and meniscus were treated with physiologically relevant concentrations of leptin, IL-6, or visfatin, alone or in combination with IL-1. Visfatin and IL-1 promoted the catabolic degradation of both cartilage and meniscus, as evidenced by increased metalloproteinase activity, nitric oxide production, and proteoglycan release. However, leptin or IL-6 at physiologic concentrations had no effect on the breakdown of these tissues. These findings suggest that the effects of obesity-induced osteoarthritis may not be through a direct effect of leptin or IL-6 on cartilaginous tissues, but support a potential role for increased visfatin levels in this regard. These data provide an important first step in understanding the role of adipokines in regulating cartilage and meniscus metabolism; however, these adipokines may have different effects in the context of the whole joint and must be evaluated further.
    Connective tissue research 07/2011; 52(6):523-33. DOI:10.3109/03008207.2011.597902 · 1.98 Impact Factor